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Metamaterials & Metasurfaces

Man-made “atoms” : Metamaterials Metasurfaces
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Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

The constituent units need to be much smaller than the wavelength. Metasurfaces are
planar (2D) equivalents of metamaterials.
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Hybrid Metasurfaces : Metasurfaces Loaded with Heterostructures @ Labarotories
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Advantages of Intersubband Transitions :
1. Voltage tunable : Tunable metasurface
2. The transition energies and dipole moments can be engineered : Extreme nonlinear optics

3. Large transition dipole moment : Strong light-matter interaction 4




1. Voltage Tunable Metasurface
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An Ultrathin Optical Modulator

Spectral Response
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Metasurface : An optically-thin array of subwavelength Or U

sized and subwavelength spaced resonators | ®
Frequency

Modulate spectral response (using e.g. voltage) = An optical modulator!
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Examples of Voltage-Tunable Approaches Ntional
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Nano Lett. 17(5), 3027 (2017)

Scientific Reports 5, 15754 (2015)  Adv. Opt. Mat. 2(11), 1057 (2014)

llI-V based tunable metasurface approaches can be integrated to focal plane arrays.
Intersubband transition approach is wavelength scalable and works in the mid and long IR wavelengths. 7




Tuning via Stark Shift in Strongly Coupled Systems (i) et
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By applying bias e1 and e2 can be shifted = Modulation of spectral response

Previous approaches rely on strongly coupled system. Strong coupling requires
wells with high doping !

Ref. : [1]A. Benz et al., Appl. Phys. Lett. 103, 263116 (2013)
[2] Lee et al., Adv. Opt. Mat. 2, 1057 (2014) 8




Reverse Biasing Highly Doped QWs : Problem ! Natoral
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= Applying reverse bias across QW-stack depletes well by well => no
continuous tuning

= High doping concentration limits effect to first few wells only




Stabilizing Internal Electric Field : Allow Current Flow () i
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= Current flow through quantum well stack stabilizes internal electric field

Ref. : [1]A. Benz et al., Appl. Phys. Lett. 103, 263116 (2013)
[2] Lee et al., Adv. Opt. Mat. 2, 1057 (2014) 10
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New Voltage Tunable Electrostatic Approach Natiora
At V=0 (start with uncoupled system)
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New Voltage Tunable Electrostatic Approach Natiora
At V=1V (Achieve a coupled system)
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At 1V bias the wells have large carrier density due to tunneling facilitated by band alignment and transitions
are on 12

Reflection




Device Fabrication

Device cross section

IST ~ 11 microns

Bias=0V
I cé)
InGaAs ( 90 nm) - ‘3
ND=291 8 e reservoir

InP substrate

Used high k dielectric to remove leakage currents

Complementary design for top contact and uniform voltage distribution and dogbone resonators
13

for high capacitance




Simulation and Experiment Results Nt
Simulation Experiment
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The leakage currents are ~ 6 pA. This demonstrates a proof of concept !

R. Sarma et al., Appl. Phys. Lett. 113, 201101 (2018) 14
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2. Nonlinear Metasurface
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Second-Harmonic Generation

Traditional approach : High power laser, phase matching using nonlinear crystals

¢ second harmonic wawe:
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Nonlinear Metasurface Approaches Notomal

Plasmonic Metasurface All Dielectric Metasurface |IST-Plasmonic Metasurface
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Ref. : A. Krasnok, M. Tymchenko, A. Alu, Materials Today 21, 8-21 (2018).
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Resonant (12 using Quantum Wells b e
InGaAs QWs with AlInAs barriers ,
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Ref. : IEEE J. Quantum Electr. 30, 1313 (1994) 18
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Leaky Mode Resonance N e
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Hybrid Structure for Second Harmonic Generation () i
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Numerical Simulations and Experimental Data eiemaies
Simulation Experiment
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The leaky mode resonances can exist for all wavelengths between 8-12 microns.

Efficiency ~ 10 for pump intensity 10 kW/cm?
21
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Experimental Data For Off Normal Incidence

Simulation Experiment
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As predicted by simulations, at ©,,.=25 degrees, two peaks of SHG are observed at 8.5 (narrower) and ~ 10.75
microns (broader).
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3. Strong Light-Matter Interaction in Dielectric
Metasurfaces
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Mie Modes in Dielectric Resonators Mool
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J. van de Groep & A. Polman, Optics Express 21, 26285 (2013) 24




Strong Light-Matter Interaction Nt
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Strong coupling of the Mie resonance to intersubband transitions can lead to Rabi splitting of the

resonance 75




Mie Resonators loaded with Quantum Wells ) i,
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Strong Light Matter Interaction i) e,
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Rabi Splitting of ~ 10 % can be observed
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Ongoing Work : Nonlinear Mie Metasurfaces [ %
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Achieve ultrathin and efficient nonlinear devices !
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Summary

 Hybrid metasurfaces offer an efficient and flexible platform to study
fundamental new physics and achieve new device functionalities.

« By simultaneous engineering of the intersubband transitions and the photonic
resonances, we can realize strong Ilight-matter interaction, ultrathin
optoelectronic devices, and nonlinear devices with relaxed phase matching

requirements.

 Finally, these approaches can be scaled to different wavelengths without loss
of efficiency.




