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Metamaterials & Metasurfaces

Man-made "atoms" : Metamaterials Metasurfaces
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Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

The constituent units need to be much smaller than the wavelength. Metasurfaces are
planar (2D) equivalents of metamaterials.
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Hybrid Metasurfaces : Metasurfaces Loaded with Heterostructures

.o
t

0

4-
0

Et

Advantages of Intersubband Transitions :
1. Voltage tunable : Tunable metasurface
2. The transition energies and dipole moments can be engineered : Extreme nonlinear optics
3. Large transition dipole moment : Strong light-matter interaction
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1. Voltage Tunable Metasurface

5



Sandia
National
Laboratories

An Ultrathin Optical Modulator
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Metasurface : An optically-thin array of subwavelength
sized and subwavelength spaced resonators

Spectral Response

40_-1.444",...
•
8 /
I /

r
/

co

Frequency

Modulate spectral response (using e.g. voltage) = An optical modulator!
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Examples of Voltage-Tunable Approaches

Graphene ITO based III-V based 
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Scientific Reports 5, 15754 (2015) Adv. Opt. Mat. 2(11), 1057 (2014)

III-V based tunable metasurface approaches can be integrated to focal plane arrays.
lntersubband transition approach is wavelength scalable and works in the mid and long IR wavelengths. 7



Tuning via Stark Shift in Strongly Coupled Systems

Plasmonic Metasurfa

Near field interaction
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By applying bias el and e2 can be shifted = Modulation of spectral response

Previous approaches rely on strongly coupled system. Strong coupling requires
wells with high doping !
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Ref. : [1] A. Benz et al., Appl. Phys. Lett. 103, 263116 (2013)
[2] Lee et al., Adv. Opt. Mat. 2, 1057 (2014) 8



Reverse Biasing Highly Doped QWs : Problem !
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• Applying reverse bias across QW-stack depletes well by well => no
continuous tuning

• High doping concentration limits effect to first few wells only
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Stabilizing Internal Electric Field : Allow Current Flow
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• Current flow through quantum well stack stabilizes internal electric field

Ref. : [1] A. Benz et al., Appl. Phys. Lett. 103, 263116 (2013)
[2] Lee et al., Adv. Opt. Mat. 2, 1057 (2014) 10



New Voltage Tunable Electrostatic Approach
At V=0 (start with uncoupled system)
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New Voltage Tunable Electrostatic Approach
At V=1 V (Achieve a coupled system)
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At 1V bias the wells have large carrier density due to tunneling facilitated by band alignment and transitions
are on 12

Strong coupling
for large number
of wells
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Device cross section

Gold Metasurface
Dogbone resonators)

Hafnia/Alumina interlayer
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Used high k dielectric to remove leakage currents

Complementary design for top contact and uniform voltage distribution and dogbone resonators
for high capacitance 13



Simulation and Experiment Results

Simulation
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The leakage currents are - 6 pA. This demonstrates a proof of concept !

R. Sarma et al., Appl. Phys. Lett. 113, 201101 (2018)
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2. Nonlinear Metasurface
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Second-Harmonic Generation
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Traditional approach : High power laser, phase matching using nonlinear crystals
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Nonlinear Metasurface Approaches

Plasmonic Metasurface
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All Dielectric Metasurface
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Ref. : A. Krasnok, M. Tymchenko, A. Alu, Materials Today 21, 8-21 (2018).
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Resonant (2) using Quantum Wells

InGaAs QWs with AllnAs barriers
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The thickness of the InGaAs QWs is optimized to
have transitions at 10 microns and 5 microns.

Ref. : IEEE J. Quantum Electr. 30, 1313 (1994) 18
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Hybrid Structure for Second Harmonic Generation
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Numerical Simulations and Experimental Data
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Experimental Data For Off Normal Incidence
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As predicted by simulations, at einc=25 degrees, two peaks of SHG are observed at 8.5 (narrower) and - 10.75
microns (broader).
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3. Strong Light-Matter Interaction in Dielectric
Metasurfaces



Refractive index of Resonator >> Surroundings
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Strong Light-Matter Interaction
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Strong coupling of the Mie resonance to intersubband transitions can lead to Rabi splitting of the
resonance 2 5



Mie Resonators loaded with Quantum Wells
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Strong Light Matter Interaction

1.2

0.8
c
o
._p
2 0.6
t

0.4

0.2

0
55 60 65

Frequency (THz)
70

0 5

0 4

c
o
t 0.3
w

It
fl 0.2

0.1

0
65 70 75

Frequency (THz)

Rabi Splitting of - 10 % can be observed

Sandia
National
Laboratories

27



0.4

0.3

0.2

o
0>, .1

2)
cu
E 0
UJ

-0.1

-0.2

Ongoing Work : Nonlinear Mie Metasurfaces
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Summary

• Hybrid metasurfaces offer an efficient and flexible platform to study
fundamental new physics and achieve new device functionalities.

• By simultaneous engineering of the intersubband transitions and the photonic
resonances, we can realize strong light-matter interaction, ultrathin
optoelectronic devices, and nonlinear devices with relaxed phase matching
requirements.

• Finally, these approaches can be scaled to different wavelengths without loss
of efficiency.
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