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Bottom line up front: a single slide summary of this
2 presentation

Exploratory analysis is a vital part of the scientific

process

The alchemists in their search for gold
discovered many other things ofgreater value.

Arthur Schopenhauer, German Philosopher

Challenge: Emerging HPC systems cannot output all

relevant simulation data to disk
Not everything that can be counted counts,

and not everything that counts can be counted.
Albert Einstein, Physicist

Algorithmic research will play a crucial role in

maintaining our ability to perform exploratory analysis

in the face of HPC system challenges

The goal is to turn data into information,

and information into insight.
Carly Fiorina, Former CEO of HP



Exploratory analysis historically has been done post
3 hoc - after the simulation is complete
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Data storage requirements for exploratory analysis
4 could be met by previous HPC systems
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Emerging HPC systems cannot output all relevant
5 simulation data to disk
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Data 1/0 discrepancy is driving some of the analysis in
6 situ - as the simulation is running
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There are many algorithmic challenges posed by the shift
7 in analysis paradigm — this presentation will explore three

Q l : How should analysis algorithms share system
resources with the application in situ?

Q2: How do analysis algorithms need to evolve to
operate within a streaming regime?

Q3: How do you enable real-time decision-making
in situ with quality and reliability guarantees?



A survey categorized combustion analysis algorithms
8 based on anticipated deployment challenges at exascale
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Volume Rendering (PVR)
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ANALYSIS
UNDERLYING
ALGORITHM

INPUT/OUTPUT
DATA SIZE

COMMUNICATION PATTERN

MAIN DESIGN SPACE OPPORTUNITIES

QUALITY FOR COST
TRADEOFFS

DATA REDUCTION
IN TRANSIT, OFFLINE

FREQUENCY
SYNCHRONICITY

Spectra
(Offline)

Spatial convoirsion Input: Grid size; Output: Grid size,
increased by Oins) points

Global ail-to-all , reduction across integral
scale 0(1/112) domain

Temporal convolution -no global comm,
must be don, every dt

Global reduction can be done in transit , can be
reduced to small number of sample points,

diagnostics; sample at outer timescale

tirnescaleScalar field
comparison

Pointwise difference Input: 2 fields
Output: 1 field

None n/a Output can be reduced to statistical description. diagnostics; accumula. over outer timescale,
sample at inner timescale

Chemical analyas (COM) Pointwise Input: Multiple fields
Output: Vector fields.

Access entire state (pointwisel nro Possibly. diagnorocs and analysis; sample at outer timesale,
async

SSA: Streaming statistical
analysis

Weighted (conditional)
summation

input: Multiple fields; Output: .1
0(1) dimensional field with

0(50.100) points in each dim.

Global allreduce. n/a ln atu accumulation, aggregation could be done in
transit.

dimnostics &analysis; accumulate over outer
Ilmescale, sarnple at inner timescale, async

Statistical dimensionality
reduction (joint affs)

Conditional sin-matron;

Panty., a aggregation
Input: Multiple fields; Output: N
0(1)dimenalnal field with

0(50-100) points in each dim.

Global allreduce. n/a in situ accumulation, aggregation could be done in
tranrs.

diagnostics and analysis; accurnuiate wen outer
anew-ale. Sample at inner timescale.

Asynchronous.

Shape analysis Eigenvalue decomposition input,. Output: dependent on
number of features Olff

requires results of feature extraction.
when done intransit each feature can be

analyzed independentny in parallel

nro Can be done intransit after completion of feature
extraction algorithm

analysis, asynchronous,
(inner timescale)'ffeature Mrs/ led aza

Feature tracking Pointwise comparisons input and Output: dependent on
number of features O(f )

regain es results of feature extraction.
when done in transit each pair of

tirnesteps con be computed independent*
in parallel

n/a Can be done intransit after completion of feature
extraction algorithm

For analysis, asynchronous,
(inner timescale)' (feature size)/ led aza

VW Multivariate volume Ray carting, point sprites and
and particle rendering image compositing

Input: Multiple fields;
Output: 2D images

Global reduce nro Rendering is mainly done in-rou, can be done in-
transit after data reduction. in-sltu or inrtanrs

image compositing

Fordlagnosticsandanatysis.Aaynchronous.

;sprang., particle aims,. Range me,
and analysis

input: entire particle data:
Output: query specific

Global gather and/or global reduce n/a Querying is mai* done in-situ depending on
particle number. In-situ or inrtanslt analysis

For diagnostics and analysis, accumulate over outer
timescale of simulation. Sample at Inner timescale.

Asynchronous

1--- Distance field Level set; pole.; !tors and Output: dependent on
specific features defining level set

Globrs all-gather followed ea global anto-
all

n/a Can he done in-transit after feature extraction For analysis. Timescale of the phenomena of
Interest. Asynchronous

RTC: Level set features,
Menge trees /contour trees

(Multiple) Global Union-find
with history

input and Output: dependent on
number of features Off) & their

extent

Global gather followed by global scatter
with most nodes potentially idle at sorne

Pant

Simplification based on persistence Depending of feature of interest significant da.
reduction often da. parallel computation.

Potentiel for in-situ - Mrtrensit SP.

&mescal, of phenomena of interest, meaning
dependent o f the ratio of feature size vs. expected

speed

Spectra
(in silo)

Spatial convolution input:Grid size, Output: Grid size, dim
in rested by 01..) Parts.

Global all-to-all , reduction across integral
scale (011/10) domain

Temporal convolution -no global come,
but must be every at

In transit global reduction; Can be reduced to small
number of sample points, global Spied.

For diagnostics; sample at outer tlmertale of
simulation.

Filtering (in place) Spatial convolution Input: l fields
Output: 1 field

Global all to all Necessary for some simulation
algorithms. Truncated fiber.

No diagnostics (sample at outer timesole, asynrs,
analysis (resolve many anew-ales, async), and test

subgrld models In situ eve, substep, sync

Filtering (with decimation) Spatial convolution input 2 fields; Output: Decimated
field

Global all to all. Truncated filter; all to few Aggregation in transit diagnostirs (sample at outer timescaleLanalysis
(resolve many timescales), async

Temporal filtering Temporal convolution Input: Time series; Output: &me
series

Need to buffer moving window of filter
sizA

Truncated filter; limit window size, do
for subset of domain.

le situ accumulation, aggrieve. in transit. Could
be decimated in time.

diagnosfics laccurn over outer Mlles..), analysrt
(resolve inner ...ales), at subset of spatial
locations (outer spatial scale ) or along frsture

trajertory. APRA&

Conditional moments -
multipass

Weighted
(ronditionallsummation.

input: Multiple fields across times.
Output: WOO) dim. field with 0(50-

100) points/dim

Buffering first pass; aggregate in place;
global allreduce.

Form single pass alternative. in situ accumulation, aggregation could be done in
transit.

diagnostics and analysis; accumulate over outer
timescale. Sample at inner timescale. Synchronous ,

asyro Osii pass

Gradient features,
ie Morse / Morse-Smale

complex

Global breadth-first traversal Unless input is pre-filtered need all
data. Output dependent on feature

density and amplification

Global gather On-the-fly simplification &/on pre-
filtering to reduce data. Umit feature

size to reduce cornm

Data reduction through pre-fittering. Potential to
store partial or sub-complex

Timescale of the phenomena of interest, meaning
dependent of the ration of feature size vs. expected

Flirted
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Q I : How should analysis algorithms share system resources with the application in situ?



Three algorithms selected for deeper analysis spanned
9 different analysis use cases

Observations

Assess

Model

'4/ O X °Observations

Test 
(perhaps assessed)

Model

updated)

Streaming Statistics (SSA)

Volume Rendering (PVR)

Topological Analysis (RTC)

Quantitative summary of global trends in the data

Debugging and analysis

Qualitative visual depiction of data

Debugging and analysis

Data reduction technique enabling exploratory
analysis post hoc

A complete characterization of the level-set
behavior of simulation variable

Quantitative & qualitative tool to define features
of interest

Q : How should analysis algorithms share system resources with the application in situ?



Deeper investigation into the three algorithms found
10 they had heterogenous behaviors and requirements
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cover a wide range of behaviors

Algorithms range from no FLOPS

to more FLOPS than solver
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Merge stages

Both hardware mapping and parameter settings can

impact overall behaviors and requirements

Algorithms can have a cross-over in communication

costs under for different mappings
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Q I : How should analysis algorithms share system resources with the application in situ?



1 An empirical study mapping analysis tasks to hardware
was considered along three axes

• Location of analysis compute resources
— Same cores as the simulation (in situ)

- Dedicated cores on the same node (in situ)

- Dedicated nodes on the same machine (in transit)

— Dedicated nodes on external resource (in transit)

• Synchronization and scheduling

- Execute synchronously with simulation
every nth simulation time step

— Execute asynchronously

• Data access, placement, and persistence

— Shared memory access via hand-off / copy

— Shared memory access via non-volatile near node
storage (NVRAM)

— Data transfer to dedicated nodes or external
resources

• simulation • analysis

network communication

•coresshared

dedicated separate nodes
dedicated cores
on same node
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Combining ln-situ and ln-transit Processing to Enable Extreme-Scale Scientific Analysis 

Q : How should analysis algorithms share system resources with the application in situ?



In situ and hybrid in situ + in transit variants of each
I 2 algorithm were implemented and deployed

Primary resources: execute main computation and in situ computations
Secondarv resources: task scheduler and in transit com utations

shared system

primary compute resources

It 1 secondary compute resources, -

. .

in-transit staging

....._
1 .  , . . .

. . . .. . . .. . . .

■ simulation = analysis ■ task scheduler
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Combining ln-situ and ln-transit Processing to Enable Extreme-Scale Scientific Analysis

Q : How should analysis algorithms share system resources with the application in situ?



A hybrid approach to workflow mapping was found to
13 minimize impact to the simulation

Observations CIN 00 ON /4 O Observations
(perhaps assessed)

Learn Derive Assess Test
Model

Model \,00,,, 00 (r1:1.2L,taps updated)

Streaming statistics (SSA)

Volume Rendering (PVR)

Topological Analysis (RTC)

• S3D

in-situ statistics

hybrid statistics

in-situ visualization

• in-situ

1.69

1.7

11

• data movement • in-transit

M
i
n

i
mal

impact Profound
reduction

Significant 
scalable

impact

algorithms
for non-

hybrid visualization 5.07
impact

hybrid topology 2.72 2.06 119 81

simulation 16.85

l l l i 1

0 2 4 6 8 10 12 14 16

seconds

• Simulation size: 1600x1372x430 • 4896 cores total: 4480 in situ /

• All measurements: per simulation time step 256 in transit / 160 scheduling
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Combining ln-situ and ln-transit Processing to Enable Extreme-Scale Scientific Analysis

Q : How should analysis algorithms share system resources with the application in situ?



Streaming statistics leveraged previous algorithmic
14 research - making it amenable for deployment in situ

Single-pass, numerically stable online update
formulas for arbitrary-order moments

Serve as a basis for many statistics algorithms
Correlative, Multi-Correlative Statistics

0 Principal Component Analysis

K-Means Clustering

Sobol Indices for Sensitivity Analysis (work @ INRIA, France)

MP,S° = MP,91 41/492

ki=21 (Pk) R 721n )k m p + (nit y p km] 81,2,1

+ Hi 824 ?) ].

nin2 pr 1 p-i

Observations r 0 0

Learn

Model

New ECP activity implementing streaming statistics
within the ECP ecosystem of tools
ASCENT (in situ library)

VTK-M (vis kernels for emerging processor architectures)

Derive Assess

1 ParaView

(M. 1 )

Observations
(perhaps assessed)

Model
(perhaps updated)

.„........, vino.
E 4,,C

1 
)1=

AreEXRECRLE COMPUTING PROJECT Aik,

Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files

Design and performance of a scalable, parallel statistics toolkit

Numerically stable, single-pass, parallel statistics algorithms

Numerically stable, scalable formulas for parallel online computation of higher-order multivariate central moments with arbitrary weights

Q2: How do analysis algorithms need to evolve to operate within a streaming regime?



The ExaCT empirical study led to multi-fidelity variants
15 of the topological analysis tools for deployment in situ

Science use cases highlighted that approximate solution was often sufficient

Refinement of requirements for streaming regime

K-way merge: Generates an exact global
solution but has limited scalability

Region Growing: Scalable, local approximation
that guarantees to correctly extract all features
up to a predefined size
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In situ Feature Extraction of Large-Scale Combustion Simulations Using Segmented Merge Trees

Q2: How do analysis algorithms need to evolve to operate within a streaming regime?



Many of the early in situ analysis tools supported
16 analysis at prescribed frequencies

At what frequency should I/0 or analysis be done?

Can this decision be made in an adaptive, data-driven fashion at run-time?

Avoid missing interesting science

Avoid expensive analysis and 1/0 when simulation state is evolving slowly

Indicator: lightweight analysis to be deployed at high frequency
Trigger: return true when the indicator has met a specific property

CHALLENGE: How do we define indicators and triggers that
I ) capture scientific phenomena of interest; and
2) are cost efficient enough to be deployed at high frequency

Key: simulation analysis I/0

)10.
time

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



A combustion use case highlights the challenges in
I 7 developing cost-efficient triggers and indicators

Homogenous Compression Charge Ignition (HCCI)

Many small heat kernels develop slowly prior to ignition

Scientists we were working with wanted:
O Coarse grid and less frequent I/0 before "things get interesting"
O Refined grid and more frequent I/0 afterwards

Chemical Explosive Mode Analysis (CEMA)
Good predictor of heat release

It tells you when "things get interesting"

O Point-wise Jacobian of chemical species

O Cost depends on complexity of simulation

In recent simulations, a full CEMA cost up to 60 times
the cost of a simulation time step

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



"Things get interesting" when there is a compression
I 8 followed by an expansion in CEMA percentile values
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Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



We developed a CEMA indicator based on the
19 variability of CEMA values in relation to the mean
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Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



We developed a CEMA indicator based on the
20 variability of CEMA values in relation to the mean

Pee,0,-y(t) = Range of ratios of Cco(t) = Look at variability in percentile values in
percentile values relation to the mean percentile value
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Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



We proposed a simple strategy for sampling
21 percentiles that scales well

Sampling-Based Algorithm

1. Sample k independent, uniform indices ri,r2, ... , r k in {1 , 2, ... , N}.

Denote by A the sorted array [A(ri), A(r2), ... , A(rk)].
2. Output the a-percentile of A as the estimate, Ay.

Scientists we were working with were initially hesitant to use a
sampling-based approach to computing CEMA, for fear of

Drawing the wrong conclusions

Missing interesting science

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



Sublinear analysis can provide rigorous guarantees
22 (math proofs) on the samples and accuracy required

Number of samples is dependent on accuracy desired

Number of samples is NOT dependent on size of domain

Highly scalable approach

Empirical studies
verified the
guarantees provided
by the sublinear
analysis proofs
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Error in indicator function for various simulation runs

Trigger Detection for Adaptive Scientific Workflows Using Percentile Sampling

Enabling Adaptive Scientific Workflows Via Trigger Detection 

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



Combined empirical and theoretical proofs were
23 extremely useful from a user-adoption perspective

Benefits of sublinear analysis:
Provides useful guarantees regarding accuracy and samples required
for algorithms that characterize trends in data

Enables rigorous deployment of algorithms otherwise too expensive
to compute for real-time decision making

Analysis could play a role in reproducibility initiatives when you
can't count everything

Limitations of sublinear analysis:
Doesn't apply to analysis algorithms focused on anomaly detection

Need to team with an applied mathematician or statistician familiar
with the underlying sublinear analysis techniques

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



There are many interesting in situ analysis challenges
24 beyond these three

Q I : How should analysis algorithms share system
resources with the application in situ?

Q2: How do analysis algorithms need to evolve to
operate within a streaming regime?

Q3: How do you enable real-time decision-making
in situ with quality and reliability guarantees?



An ASCR workshop on In Situ Data Management
25 (ISDM) identified six priority research directions

Pervasive ISDM: Apply ISDM
methodologies and in situ workflows at a
variety of platforms and scales.
In Situ Algorithms: Redesign data
analysis algorithms for the in situ
paradigm.
Composable ISDM: Develop
interoperable ISDM components and
capabilities for an agile and sustainable
programming paradigm.
Co-designed ISDM: Coordinate the
development of ISDM with the underlying
system software so that it is part
of the software stack.
Controllable ISDM: Understand the
design space of autonomous decision-
making and control of in situ workflows.
Transparent ISDM: Increase confidence
in reproducible science, deliver repeatable
performance, and discover new data
features through the provenance of ISDM.

ASCR WORKSHOP
ON IN SITU DATA
MANAGEMENT
Enabling Sdentific Discovery

from Diverse Data Sources

January 28-29, 2019

Workshop brochure available now
Full report later this year



Algorithmic research will play a crucial role, but not in
26  isolation

Crossing the "valley of death" - algorithms must be
pulled into a sustainable ecosystem of tools
Interdisciplinary challenges - different subject matter
experts
Guarantees on accuracy, reliability, and reproducibility in
the regime where you "can't count everything"
Use cases beyond exploratory analysis: UQ, ensembles,
integration of experimental & simulation data
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Machine learning (ML) has tremendous potential as a
27 tool, but we do not yet know how to wield it

Potential Benefits:
Automation and real-time decision-
making

Optimal configuration of algorithms

Physics + data constrained reduced
order models

Challenges:
Training and updating models

Developing first-principles
constrained ML models

Explainable and validated models

Is the model learning based on spurious
correlations?
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Nature Communications Article: Unmasking Clever Hans predictors and assessing what machines really learn 
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29 I Questions?

Exploratory analysis is a vital part of the scientific

process

The alchemists in their search for gold
discovered many other things ofgreater value.

Arthur Schopenhauer, German Philosopher

Challenge: Emerging HPC systems cannot output all

relevant simulation data to disk
Not everything that can be counted counts,

and not everything that counts can be counted.
Albert Einstein, Physicist

Algorithmic research will play a crucial role in

maintaining our ability to perform exploratory analysis

in the face of HPC system challenges

The goal is to turn data into information,

and information into insight.
Carly Fiorina, Former CEO of HP


