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Bottom line up front: a single slide summary of this
2 | presentation

Exploratory analysis is a vital part of the scientific
process

The alchemists in their search for gold
discovered many other things of greater value.

Arthur Schopenhauer, German Philosopher

Challenge: Emerging HPC systems cannot output all
relevant simulation data to disk
Not everything that can be counted counts, g

and not everything that counts can be counted.
Albert Einstein, Physicist

Algorithmic research will play a crucial role in ‘
maintaining our ability to perform exploratory analysis
in the face of HPC system challenges |

The goal is to turn data into information, 4

and information into insight.
Carly Fiorina, Former CEO of HP




Exploratory analysis historically has been done post
;| hoc - after the simulation is complete
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Data storage requirements for exploratory analysis
could be met by previous HPC systems
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Emerging HPC systems can
simulation data to disk
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Data |/O discrepancy is driving some of the analysis in
situ - as the simulation is running
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There are many algorithmic challenges posed by the shift
71 in analysis paradigm — this presentation will explore three

QI: How should analysis algorithms share system
resources with the application in situ?

Q2: How do analysis algorithms need to evolve to
operate within a streaming regime!?

Q3: How do you enable real-time decision-making
in situ with quality and reliability guarantees?




A survey categorized combustion analysis algorithms
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Observations u N\ n u u u N/ u U \ UOhservations

(perhaps assessed)
Assess Model

M?ﬂﬂ/ \M/ 1 l]ﬂi un/ \G(Pih’aps updated)
Streaming Statistics (SSA)

Learn Derive Test

Topological Analysis (RTC)

based on anticipated deployment challenges at exascale

MAIN DESIGN SPACE OPPORTUNITIES

ANALYSIS UNDERLYING Ineut/OCHS COMMUNICATION PATTERN
ALGORITHM DATA SIZE QuALITY FOR CosT DATA REDUCTION FREQUENCY
TRADEOFFS IN TRANSIT, OFFLINE SYNCHRONICITY
Spectra Spatial convolution Input: Grid size; Output: Grid size, | Global all-to-all + reduction across integral | Temporal convolution —no global comm, | Global reduction can be done in transit , can be diagnostics; sample at outer timescale
(Offline) increased by O(nx) points scale O(1/10) domain must be done every dt reduced to small number of sample points,
timescaleScalar field Pointwise difference Input: 2 fields None n/a Output can be reduced to statistical description. diagnostics; accumulate over outer timescale,
comparison Output: 1 field sample at inner timescale
Chemical analysis (CEMA) Pointwise Input: Multiple fields Access entire state (pointwise) n/a Possibly. diagnostics and analysis; sample at outer timesale,
async
SSA: Streaming statistical Weighted (conditional) Input: Multiple fields; Output: N Global allreduce. n/a In situ accumulation, aggregation could be done in diagnostics &analysis; accumulate over outer
analysis summation 0(1) dimensional field with transit. timescale, sample at inner timescale, async
0(50-100) points in each dim,
Statistical dimensionality Conditional summation; Input: Multiple fields; Output: N Global allreduce. n/a In situ accumulation, aggregation could be done in diagnostics and analysis; accumulate over outer
reduction (joint pdfs) pointwise + aggregation 0(1) dimensional field with nsit. timescale. Sample at inner timescale,
0(50-100) points in each dim. Asynchronous.
Shape analysis Eigenvalue decomposition Input and Output: dependent on requires results of feature extraction. n/a Can be done intransit after completion of feature analysis, asynchronous,
number of features Of) when done intransit each feature can be extraction algorithm (inner timescale)* (feature size)/(grid size)
analyzed independently in parallel
Feature tracking Pointwise comparisons Input and Output: dependent on requires results of feature extraction. n/a Can be done intransit after completion of feature For analysis, asynchronous,
number of features O(f) when done in transit each pair of extraction algorithm (inner timescale)*(feature size)/(grid size)
timesteps can be computed independently
in parallel
PVR: Multivariate volume | Ray casting, point sprites and Input: Multiple fields; Global reduce n/a Rendering is mainly done in-situ, can be done in- For diagnostics and analysis. Asynchronous.
and particle rendering image compositing Output: 2D images transit after data reduction. In-situ or in-transit
image compositing
Lagrangian particle querying Range query Input: entire particle data; Global gather and/or global reduce n/a Querying is mainly done in-situ depending on For diagnostics and analysis, accumulate over outer
and analysis Output: query specific particle number. In-situ or in-transit analysis timescale of simulation. Sample at inner timescale.
Asynchronous
Distance field Level set; pointwise Input and Output: dependent on Global all-gather followed by global all-to- n/a Can be done in-transit after feature extraction For analysis, Timescale of the phenomena of

specific features defining level set

all

interest. Asynchronous

RTC: Level set features,
Merge trees /contour trees

(Multiple) Global Union-find
with history

Input and Output: dependent on
number of features O(f) & their

Global gather followed by global scatter
with most nodes potentially idle at some

Simplification based on persistence

Depending of feature of interest significant data
reduction after data parallel computation.

Timescale of phenomena of interest, meaning
dependent of the ratio of feature size vs. expected

extent oint Potential for in-situ — in-transit split spee
o
Spectra Spatial convolution Input: Grid size, Output: Grid size, dim| Global all-to-all + reduction across integral | Temporal convolution —no global comm, [In transit global reduction; Can be reduced to small|  For diagnostics; sample at outer timescale of
(In situ) increased by O(nx) points. scale (0(1/10) domain but must be every dt number of sample points, global spectra simulation.

Filtering (in place)

Spatial convolution

Input: 1 fields
Output: 1 field

Global all to all

Necessary for some simulation
algorithms. Truncated filter.

No

diagnostics (sample at outer timescale, async),
analysis (resolve many timescales, async), and test
subgrid models in situ every substep, sync

Filtering (with decimation)

Spatial convolution

Input: 2 fields; Output: Decimated
field

Global all to all

Truncated filter; all to few

Aggregation in transit

diagnostics (sample at outer timescale),analysis
(resolve many timescales), async

Temporal filtering

Temporal convolution

Input: Time series; Output: Time
series

Need to buffer moving window of filter
size.

Truncated filter; limit window size, do
for subset of domain

in situ accumulation, aggregatioin in transit. Could
be decimated in time.

diagnostics (accum over outer timescale), analysis
(resolve inner timescales), at subset of spatial
locations (outer spatial scale ) or along feature
trajectory. Asynch.

Conditional moments -
multipass

Weighted
(conditional)summation.

Input: Multiple fields across times.
Output: N~0(1) dim. field with O(50-
100) points/dim

Buffering first pass; aggregate in place;
global alireduce.

Form single pass alternative.

In situ accumulation, aggregation could be done in
transit

diagnostics and analysis; accumulate over outer
timescale. Sample at inner timescale. Synchronous +
async 2 pass

Gradient features,
ie Morse / Morse-Smale
complex

Global breadth-first traversal

QI:How should analysis algorithms share system resources with the application in situ?

Unless input is pre-filtered need all
data. Output dependent on feature

Global gather

density and simplification

CENTER F

OR

On-the-fly simplification &/or pre-
filtering to reduce data, Limit feature
size to reduce comm

Data reduction through pre-filtering. Potential to
store partial or sub-complex

EXASCALE SIMULATION OF COMBUSTEON |

Timescale of the phenomena of interest, meaning
dependent of the ration of feature size vs. expected
speed

N TURBULENCE




Three algorithms selected for deeper analysis spanned
s | different analysis use cases

Oservaiom S H——0N AH—TDomzacions . . .
)| oo (s (e e Quantitative summary of global trends in the data

Model

Mod_elo/ \W 1 uu! Un; \{}Mpsupda[ed)
Streaming Statistics (SSA) ~ Debugging and analysis

Qualitative visual depiction of data

Debugging and analysis

Data reduction technique enabling exploratory
analysis post hoc

A complete characterization of the level-set
behavior of simulation variable

Topological Analysis (RTC)  Quantitative & qualitative tool to define features

of interest

QI:How should analysis algorithms share system resources with the application in situ?
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Deeper investigation into the three algorithms found
they had heterogenous behaviors and requirements

LMC Solver

Branches
4%

Memory __-Branches
Ops___ <l 4%
6% 4

Analytics instruction mixes
cover a wide range of behaviors

Algorithms range from no FLOPS
to more FLOPS than solver

Total Communication

300001

15000000

2-cores per node

4-cores per node

Net. Com. Last w—Net. Com. Last

Net. Com. First e Ne't. Com. First

@ Net. Com. Last @ Ne't. Com. Last e Net. Com. Last

@ Net. Com. First

Merge stages

8-cores per node

Net. Com. Last

Net. Com. First

" a%iew Aseuiq

281ow Aem-g

Both hardware mapping and parameter settings can

Algorithms can have a cross-over in communication

impact overall behaviors and requirements

costs under for different mappings

CENTER FOR

QI:How should analysis algorithms share system resources with the application in situ?

EXASCALE SIMULATION OF COMBUSTUEON

IN TURBULENCE




An empirical study mapping analysis tasks to hardware

was considered along three axes

e Location of analysis compute resources

Same cores as the simulation (in situ)

Dedicated cores on the same node (in situ)
Dedicated nodes on the same machine (in transit)
Dedicated nodes on external resource (in transit)

e Synchronization and scheduling

Execute synchronously with simulation
every nt" simulation time step

Execute asynchronously

e Data access, placement, and persistence

Shared memory access via hand-off / copy

Shared memory access via non-volatile near node
storage (NVRAM)

Data transfer to dedicated nodes or external
resources

M simulation M analysis

shared cores

network communication

1

dedicated cores
on same node

dedicated separate nodes

synchronous time
o o e
asynchronous time

dram hand- non-volatile data transter to
off/copy shared memory dedicated nodes

CENTER FOR EXASCALE SIMULATION OF COMBUSTEON IN TURBULENCGCE

Combining In-situ and In-transit Processing to Enable Extreme-Scale Scientific Analysis

QI:How should analysis algorithms share system resources with the application in situ?




In situ and hybrid in situ + in transit variants of each
2 | algorithm were implemented and deployed

Primary resources: execute main computation and in situ computations
Secondary resources: task scheduler and in transit computations

shared system

primary compute resources

secondary compute resources
in-transit staging

B simulation M analysis B task scheduler

CENTER FOR EXASCALE SIMULATION OF COMBUSTEIKON IN TURBULENCE

Combining In-situ and In-transit Processing to Enable Extreme-Scale Scientific Analysis

QI:How should analysis algorithms share system resources with the application in situ?



A hybrid approach to workflow mapping was found to

3 | minimize impact to the simulation

Observations ﬁ N\ n u u u N/ u U \ UObservextions

5 (perhaps assessed)
Learn Derive Assess Test
Model

Mod_eloj \M/ 1 un! un/ \ U(perhaps updated)
Streaming statistics (SSA)

Topological Analysis (RTC)

W S3D
in-situ statistics
hybrid statistics

in-situ visualization
hybrid visualization
hybrid topology

simulation

B in-situ

B data movement

Minimal
impact

Significant
impact

M in-transit

Profound impact
reduction for non-
scalable algorithms

seconds

¢ Simulation size: 1600x1372x430

* All measurements: per simulation time step

10 12 14

* 4896 cores total: 4480 in situ /

256 in transit / 160 scheduling

Combining In-situ and In-transit Processing to Enable Extreme-Scale Scientific Analysis

CENTER FOR EXASCALE SIMULATION OF COMBUSTION IN TURBULENCE

QI:How should analysis algorithms share system resources with the application in situ?



Streaming statistics leveraged previous algorithmic
4+ 1 research - making it amenable for deployment in situ

My v =Mp s +Mp 5,
Single-pass, numerically stable online update +fZ (Z) [(_"2)*M,,_k.y,+(’j_;)"M,,_k.yz]6§.

formulas for arbitrary-order moments e [ seins)
+( "*62,,) [n”—"_(?) ] (IIL1)

Serve as a basis for many statistics algorithms

* H * & * servations servations
> Correlative, Multi-Correlative Statistics o ‘ NPT U\
Learn Derive Assess Test Model
° Principal Component Analysis Mol oA NG S apertees vpeaced

> K-Means Clustering
> Sobol Indices for Sensitivity Analysis (work @ INRIA, France)

M ParaView

New ECP activity implementing streaming statistics
within the ECP ecosystem of tools

> ASCENT (in situ library)
> VTK-M (vis kernels for emerging processor architectures)

o

ey

Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files

Design and performance of a scalable, parallel statistics toolkit

Numerically stable, single-pass, parallel statistics algorithms

Numerically stable, scalable formulas for parallel online computation of hisher-order multivariate central moments with arbitrary weights

Q2: How do analysis algorithms need to evolve to operate within a streaming regime?




The ExaCT empirical study led to multi-fidelity variants
s | of the topological analysis tools for deployment in situ

Science use cases highlighted that approximate solution was often sufficient

Refinement of requirements for streaming regime

JTILETIY
K-way merge: Generates an exact global
solution but has limited scalability

By P,
ABT, ABT,
L ¥

ABT, P,=Process Id

Region Growing: Scalable, local approximation
that guarantees to correctly extract all features
up to a predefined size

In situ Feature Extraction of Large-Scale Combustion Simulations Using Seemented Merge Trees

Q2: How do analysis algorithms need to evolve to operate within a streaming regime?




Many of the early in situ analysis tools supported |
« | analysis at prescribed frequencies

At what frequency should I/O or analysis be done?

Can this decision be made in an adaptive, data-driven fashion at run-time?
> Avoid missing interesting science

> Avoid expensive analysis and I/O when simulation state is evolving slowly

Indicator: lightweight analysis to be deployed at high frequency
Trigger: return true when the indicator has met a specific property

CHALLENGE: How do we define indicators and triggers that
|) capture scientific phenomena of interest; and
2) are cost efficient enough to be deployed at high frequency

- B B B >
time

Key: simulation analysis

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?



A combustion use case highlights the challenges in

7| developing cost-efficient triggers and indicators

Homogenous Compression Charge Ignition (HCCI)
Many small heat kernels develop slowly prior to ignition

Scientists we were working with wanted:
> Coarse grid and less frequent I/O before “things get interesting”
> Refined grid and more frequent I/O afterwards

Chemical Explosive Mode Analysis (CEMA)
> Good predictor of heat release
> It tells you when “things get interesting”
> Point-wise Jacobian of chemical species
> Cost depends on complexity of simulation

In recent simulations, a full CEMA cost up to 60 times
the cost of a simulation time step

Q3:How do you enable real-time decision-making in situ with quality and reliability guarantees?

-



“Things get interesting” when there is a compression
s | followed by an expansion in CEMA percentile values

Things get
interesting

16000

Expansion

14000

12000

Compression

10000

8000

6000

4000

CEMA Percentiles

2000 2

0 100 200 300 400 500 600 700 800

Time Step

Py = min value
PIOO = max Value Q3:How do you enable real-time decision-making in situ with quality and reliability guarantees?




We developed a CEMA indicator based on the
w9 | variability of CEMA values in relation to the mean

CEMA Percentiles
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Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees? |




We developed a CEMA indicator based on the
» | variability of CEMA values in relation to the mean

Pa,p(t) = Range of ratios of (C, 5(t) = Look at variability in percentile values in

percentile values relation to the mean percentile value
£ £
5500 - — Poor.. o
— P
5000 - 02.. 09
§ —Poo1.. 10
S 45001
c
S 4000
5 g Avoid use of minimum and
o sp =094 . .
< 30 Zaks maximum percentiles as
2 3000 these are outliers
2500
2000 - 0.01
|
1500F | . | | . | . .
260 280 300 320 340 360 380 400 420 440
Time Step

Q3:How do you enable real-time decision-making in situ with quality and reliability guarantees?



We proposed a simple strategy for sampling
a | percentiles that scales well

Sampling-Based Algorithm

1. Sample k independent, uniform indices r1,72,...,7% in {1,2,..., N}.
Denote by A the sorted array [A(r1), A(r2), ..., A(rk)]-
2. Output the a-percentile of A as the estimate, p,.

Scientists we were working with were initially hesitant to use a
sampling-based approach to computing CEMA, for fear of

> Drawing the wrong conclusions
> Missing interesting science

Q3:How do you enable real-time decision-making in situ with quality and reliability guarantees?




Sublinear analysis can provide rigorous guarantees
» | (math proofs) on the samples and accuracy required

Number of samples is dependent on accuracy desired
Number of samples is NOT dependent on size of domain

Highly scalable approach

Empirical studies
verified the
guarantees provided
by the sublinear
analysis proofs

Number of Samples
0.012 —————F——F——F——7—7—T—T—T—"—"—7—

I 12K
I 24K |
48K

0.01

T

0.008
0.006

Error

0.004
0.002

0

¢ ¢ ¢ ¢ § 4 s .,Q)’.,%’.,Q)/.,%I.:\/.f\/.f\’.f\l
AN NI S R S R N R e R g R NS
F F F FFg N O E O LE&L
I EEE

Error in indicator function for various simulation runs

Trigger Detection for Adaptive Scientific Workflows Using Percentile Sampling

Enabling Adaptive Scientific Workflows Via Trigger Detection

Q3:How do you enable real-time decision-making in situ with quality and reliability guarantees?



Combined empirical and theoretical proofs were
extremely useful from a user-adoption perspective

23

l‘ Benefits of sublinear analysis:

° Provides useful guarantees regarding accuracy and samples required
for algorithms that characterize trends in data

> Enables rigorous deployment of algorithms otherwise too expensive
to compute for real-time decision making

> Analysis could play a role in reproducibility initiatives when you
can’t count everything

A

Limitations of sublinear analysis:
> Doesn’t apply to analysis algorithms focused on anomaly detection

> Need to team with an applied mathematician or statistician familiar
with the underlying sublinear analysis techniques

Q3: How do you enable real-time decision-making in situ with quality and reliability guarantees?




There are many interesting in situ analysis challenges
» | beyond these three

QI: How should analysis algorithms share system
resources with the application in situ?

Q2: How do analysis algorithms need to evolve to
operate within a streaming regime!?

Q3: How do you enable real-time decision-making
in situ with quality and reliability guarantees?




An ASCR workshop on In Situ Data Management
» | (ISDM) identified six priority research directions

I. Pervasive ISDM: Apply ISDM

: : ASCR WORKSHOP
methodologies and in situ workflows at a SR T D

variety of platforms and scales. MANAGEMENT

2. In Situ Algorithms: Redesign data o S S
analysis algorithms for the in situ sy 262,20
paradigm.

3. Composable ISDM: Develop
interoFerabIe ISDM components and
capabilities for an agile and sustainable
programming paradigm.

4. Co-designed ISDM: Coordinate the
development of ISDM with the underlying
system software so that it is part
of the software stack.

5. Controllable ISDM: Understand the
design space of autonomous decision-
making and control of in situ workflows.

6. Transparent ISDM: Increase confidence
in reproducible science, deliver repeatable
erformance, and discover new data -

eatures through the provenance of ISDM.

7%, U.S. DEPARTMENT OF

7 % B

\“/ENERGY
s

Workshop brochure available now
Full report later this year




Algorithmic research will play a crucial role, but not in

% | isolation

> Crossing the “valley of death” - algorithms must be
pulled into a sustainable ecosystem of tools

> Interdisciplinary challenges - different subject matter
experts

> Guarantees on accuracy, reliability, and reproducibility in
the regime where you “can’t count everything”

> Use cases beyond exploratory analysis: UQ, ensembles,
integration of experimental & simulation data

s

OUR FIELD HAS BEEN STRUGGLE NO MORE!
STRUGGLING WITH THIS T'™M HERE TO SOLVE
PROBLEM FOR YEARS. IT JITH ALGORITHIS!

|

SIX MONTHS LATER:

WOL, THIS PROBLEM
15 REALLY HARD,

( YOU DONT SAY

\\l/

xked




Machine learning (ML) has tremendous potential as a
2z | tool, but we do not yet know how to wield it

Potential Benefits:

THIS 15 YOUR MACHINE LEARNING SYSTEM?
o Automation and real-time decision- |

YUP! YOU POUR THE DATA INTD THIS BIG

making PILE OF LINEAR ALGEBRA, THEN COLLECT
> Optimal configuration of algorithms THE ANSWERS ON THE OTHER SIDE.
° Physics + data constrained reduced WHAT IF THE ANSWERS ARE WRONG? )
order models JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Challenges:

° Training and updating models

> Developing first-principles
constrained ML models

> Explainable and validated models

> Is the model learning based on spurious
correlations?

xked

Nature Communications Article: Unmasking Clever Hans predictors and assessing what machines really learn
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2 | Questions!?

Exploratory analysis is a vital part of the scientific
process

The alchemists in their search for gold
discovered many other things of greater value.

Arthur Schopenhauer, German Philosopher

Challenge: Emerging HPC systems cannot output all
relevant simulation data to disk
Not everything that can be counted counts, g

and not everything that counts can be counted.
Albert Einstein, Physicist

Algorithmic research will play a crucial role in ‘
maintaining our ability to perform exploratory analysis
in the face of HPC system challenges

The goal is to turn data into information, 4

and information into insight.
Carly Fiorina, Former CEO of HP




