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Data Science Framework

Unknown Target Function

u: L ->Y

- Y= u(X,, ..., X))

l

Training Data
(Y1), (6, 1) -, Oy, )

!

Learning from Data

l

Learned function
aru




Data Science Framework

X

X4

Xy ooy Xy ———>

Uncertainty Quantification

Unknown Target Function

u: ¥ ->Y

- Y= u(X,,.... X))

!

Training Data
(X1, ¥1)s (695 ¥2)s +ves (X V)

!

e Input/output are random
variables

o Number of inputs is large

e Target function is
expensive to evaluate

Learning from Data

l

Learned function
a=~u




Data Science Framework

X
. l Unknown Target Function % x x
: —* =Uu 4te ¥
u:L->Y Xy X)
Xd
X Training Data
Xijsisiss —
! N (0 D)s (82 ¥2)s - (s )
Big Data l
® Number of training data is Learning from Data
large
e Computation and storage l
becomes intractable
Learned function 7~ /\
a=~u




Application in Computational Sciences

104.45°

&1

X =A¢g, X; ~N(0,1)
Quantity of Interest: E(u(X,...,Xq))

e u(X) is anharmonic potential energy surface
e Dimension of u(X): d = (3 x #atoms — 6)
0 Water, d =3
O Benzene, d = 30

[Approximation of high dimensional functions is difficult)




Curse of Dimensionality

Linear approximation

n

u(X) = uigi(X)

i=1
where ¢;(X) constitute a suitable basis (ex. polynomial, wavelets etc)

Construction of multidimensional basis

e Choose n basis functions {(bf‘k},’-’kzl in dimension 1 < k < d

n

u(Xy, ..., Xq) = Z sios Uiy iy 05 (X1) - .. ¢Z,(Xd)7 Uy..iy €ER

=1 iy=1

e Number of coefficients: N = n?

Can smoothness help?

e If u € C°, number of coefficients to achieve accuracy e

N = O(e~9/%) (Curse of dimensionality)

4 /a2



Intro

Remedies: Structured approximations

e Low effective dimensionality *: u(X) mainly depends on few parameters
Xk, K {1,...,d}
e Low-order interactions 2: Higher order interaction terms have negligible impact
e Sparsity 3: u(X) is sparse on the basis {¢;(X),i € A}
u(X) = uigi(X), Ao C A, #M, = n
€N,
e Low rank *: u(X) can be well approximated using separated representation

r

u(Xe, ., Xa) & > ub (%) uf (Xa)
i=1

(Key Idea: Combine low rank and sparsity)

LConstantine '10, Tippireddy'12.
2Blatman’09

3Doostan'11

4Nouy’09

5/42



Big (Scientific) Data

[5]
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10" [4]
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o
10’
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1 T. Echekki, J.H. Chen, Comb. Flame, 1996, vol.106.

2 T. Echekki, J.H, Chen, Proc. Comb. Inst., 2002, vol. 29.

3 R. Sankaran, E.R. Hawkes, J.H. Chen, Proc. Comb. Inst., 2007, vol. 31.

4 E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, Comb. Flame, 2012 (online).

5 Gordon Bell submission, 2015 6/42



Lo lowrnk  Seamity ____ Compremion _______Perpectives
Compression of Big Data

Motivation

e Data sizes have already outpaced hardware resources
e Compression, even lossy, seems inevitable for

O Data archival
O Data analysis
0 Data sharing
e Scientific data usually consist of field data that is smooth and continuous over a
domain

Original €=1le-4 €=1le-2

400X Compression 20000X Compression
7/42



Tensor Based Compression

Compression of Structured Data
Tucker decomposition

@ NyX R [Kolda'17]
P wx, XrGRUBVEW
U

Ry X Ry X Ry X': Structured data tensor
G: Core tensor
Ny XR :
Ny X Ny X N3 154 U, V, W: Factor matrices

Compression of Unstructured Data

Machine Learning

Functional
Representation

ez, Z2)

Sampling

[ ——=L %

8 /|42



Outline

Introduction

Low rank tensor formats and approximation algorithms

Sparsity in low rank tensor formats

Tensors for Big data Compression

Future research and teaching
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Outline

Low rank tensor formats and approximation algorithms
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Canonical rank and tensor format

Canonical rank
. — r 1 d _ /A 1 d
o rank(u) < r:u(X) =31 uf(X1)...uf(Xq) = (X, ui @@ uf) (X)

Canonical Rank-r
Re= {V*ZP}®-~-®pF’ ; pf —¢(Xk)Tp;k}
i=1

e Parametrization: v = Fg,(p',...,p%); p* € R

Properties

e R, is not closed ford >2and r > 1

e Best approximation problem is not well posed — numerical instabilities

11 /42



Tree based rank and tensor formats

K-rank

o rankk(u) < rk, u(X) = 2%, o (Xe)uX (Xke); K € {1,...,d}

Tree based rank

e rankk(u) < rx, VK € T C 22

where T is a tree of dimensions
Hierarchical Tucker

{1,2,3,4}

N

1.2 B4

{1} 2 3 4

Tensor Train

{1,2,3,4}

/\

{11 {234}

2 {34

B8 @4



Tensor Train format

Tensor Train rank

TT: ={v:rankg, ay(u) <rn,1<i<d-1}

13 /42



Tensor Train format

Tensor Train rank

TT:={v:rankga, ay(v) <r,1<i<d-1}

.....

.d 1 2
v = Z pP1i, ® P,
\ =1
r ra rd—1

V:ZP%-’&@ZP’%’E ®Zp’d2’d1®p’d11

' \ =1 =1 ig—1=1
d—

13 /42



Tensor Train format

-1

7

d

Tensor Train rank

TT:={v:rankga, ay(v) <r,1<i<d-1}

.....

=1
rn ra rd—1
- 1 2 &
V_Zpl-il(g)zpiliz - ® zp'd 20d— 1®'Dld 1,1
=1 i2=1 ig—1=1

Tensor Train tensor [Oseledets’12]

TTr = {V - Z ® plifﬂk; Pli—ﬂk = ¢(Xk)Tpik—1fk}

i€T k

e — {I = (lo7 i1, s ,l.d_]_7 id); ix € {1, G rk}}; o —ry — 1
e Parametrization: v = F,(p*,...,p%); p* = (RP)%—1"%

13 /42



Low rank formats: Approximation

Minimization problem

Q
0 d .
min lu = Fag (8.0 with [l —vifh = D lu(re) ~ v(e)P

q=1
Alternating least-squares (ALS)
e Forre R
O For 1< i< d and for fixed p/,j # i
min ||u — Faq, (P50, P92
pi

e Select optimal rank in R using cross validation (K-fold)

14 /42



ALS approximation

Canonical format

e Direct construction: Solve min |ju — v||
VER,

15 /42



ALS approximation

Canonical format

e Direct construction: Solve min |ju — v||
VER,
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ALS approximation

Canonical format

e Direct construction: Solve min |ju — v||
VER,
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ALS approximation

Canonical format
e Direct construction: Solve min [|u — v||3
VER,

e Greedy construction

O Set up =0
O For r > 1, Solve min ||u—u—1—v|%
VER:1
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ALS approximation

Canonical format
e Direct construction: Solve min [|u — v||3
VER,

e Greedy construction

O Set up =0
O For r > 1, Solve min ||u—u—1—v|%
VER1

s
® P

I
U P
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ALS approximation

Canonical format
e Direct construction: Solve min [|u — v||3
VER,

e Greedy construction

O Set up =0
0 For r > 1, Solve min ||u— ur—1 — v||é
VER1

v
® P

[
U P

15/ 42



ALS approximation

Canonical format
e Direct construction: Solve min [|u — v||3
VER,

e Greedy construction

O Set up =0
0 For r > 1, Solve min ||u— ur—1 — v||é
VER1

VA

:

® P, 2
L

u n

®
:F-I
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ALS approximation

Canonical format
e Direct construction: Solve min [|u — v||3
VER,

e Greedy construction

O Set up =0
0 For r > 1, Solve min ||u— ur—1 — v||é
VER1

VA

:

® P, 2
L

u n

®
:F-I

Tensor Train format
e Solve min ||u—v|%
veT T,

e Combinatorial problem for the selection of rank

15/ 42



lllustration: Low Rank Approximation of Potential Energy

104.450°

Water (d = 3)

Potential Energy Surface
IUU
e Approximation Space: ®g:1Pf4‘
e Rank: 1 <r <30 o 102
o e= leoude o — 10000
llullqr
1074

100 150200 300

tn S
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Low rank

lllustration: Low Rank Approximation of Potential Energy

Potential Energy Surface

e Approximation Space: ®g:1Pf4‘
e Rank: 1 <r <30
o e= leoude o — 10000

lluller

10!

10"

w 107!

Formaldehyde (d = 6)

0.1 0.5 1 152 4 6 810
11103
5/10 16 /42



Sampling and Computational Complexity

Sampling Complexity
e Approximation of multivariate functions in polynomial spaces [Chkifa'13]
Q ~ (#M)*; A : Basis set
e Question: Number of samples w.r.t number of parameters in low rank format?
Q ~ f(d,r,n)

e Conjecture: For canonical rank-r format in polynomial spaces [Rai '15]

0 Greedy: Q ~ dr(n)?
O Direct: Q ~ d(nr)?

Computation Complexity

e Complexity of (Direct) ALS: O(r?dn*Q) — O(r*d?n*)
e Complexity of (Greedy) ALS: O(dn*Q) — O(rd*n*)

[Can we further reduce the number of samples?J

17 /42



Outline

Sparsity in low rank tensor formats
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Sparsity in linear approximation

Least-squares with sparse regularization
P

u(X) = Z vigi(X) = ¢(X)TV

=1

e If u(X) is sparse on the basis set {¢;}7;

min [Ju — ®v||3 s.t. [[v|]jo < m or min |ju— ®vl||3 + A||v||o
veRP vERP

e Convexification
min [lu — ®v]|3 + Allv|l2
veRP

Selection of A\

e Least Angle Regression for solving sparse least-squares [Efron’04]

e Fast leave one out cross validation for selection of optimal sparse vector

19 /42



Sparsity

lllustration: Sparse approximation of Potential Energy

P

J J

=

Approximation Space: ®J_,Pk Approximation Space: ®12 Pk
Number of basis = 1953125 Number of basis = 244140625
10!
:54 100 L
5
e
g 10°'E
2
<
2 o | [—cm ©s)
= 10 -- Cr‘H41 (Low rank)
——CyH, (CS)
- = CyH, (Low rank)
107 . r
2 2 8 2
=8 B

10000
20000 F

Sample Size 20/ 42



Approximation in sparse tensor formats

Sparse low rank tensor formats A™SPse

Afeeeane FM(Pl,pz,...,Pd); HpkHO <my; 1< k<d}

Alternating least-squares with sparse regularization
e ALS with sparse regularization

min_Jlu—Fum(p’,. ) st (I flo < ma

p ,u-,pd|



Approximation in sparse tensor formats

Sparse low rank tensor formats A™*Pse

SRR {V _ FM(Pl,Pz,- ) -,Pd); lpkHO <mg 1<k< d}

Alternating least-squares with sparse regularization

e ALS with sparse regularization

.,pd

d
plmin lu = Faa(p®, -, p)2 + D Allp’lla
=



Approximation in sparse tensor formats

Sparse low rank tensor formats Af™ P3¢

PP = M = FM(pl,pz,...,pd); ]pkHO <my; 1< k< d}

Alternating least-squares with sparse regularization

e ALS with sparse regularization

(s

I




Approximation in sparse tensor formats

Sparse low rank tensor formats Af™ P3¢

PP = M = FM(pl,pz,...,pd); ]pkHO <my; 1< k< d}

Alternating least-squares with sparse regularization

e ALS with sparse regularization

(s

I




Approximation in sparse tensor formats

Sparse low rank tensor formats Af™ P3¢

PP = M = FM(pl,pz,...,pd); ]pkHO <my; 1< k< d}

Alternating least-squares with sparse regularization

e ALS with sparse regularization

pd‘

d
lu = Faa(p®, -, p)IG + D Aellp“lln
k=1

Pl
3
& A
® pi ® pi
- 1 - [ o= -
U P p!

21 /42



Sparsity

[llustration:Checkerboard function

Rank-2 functlon

Xl,Xg Z W X2)

X -~ U(0,1)

© w?(Xe)  (d)w (Xz)

Approximation of u in 8},1 ® 8,2,2
Piecewise polynomials of degree p defined on a uniform partition of s intervals:

k _
SP;( - vas

N
N
~
B
Y]



[llustration: Checkerboard function

Checkerboard function (Q = 200)

| | Sparse | Lowrank | Sparse low rank |

Approximation space Error Error  Rank Error Rank
Pos @ Pag, P = 182 0.5591 | 0.664 2 A0 2
P212 @ P12, P =362 | 0.9867 = = 1.5010 12 2
Pio6 ® Pios, P = 66 | 1.6575 = = 7.8810° 13 2

With few samples:
e Sparse low rank gives quasi-exact recovery

e Rank 2 is retrieved



ALS in Tensor Train Format

Forl1<k<d-1

e Compute sparse w***1 by solving

min_fJu— F¥(pr, ..., " p?) 3 + Auflvec(w )
whkik+1

e Compute truncated low-rank approximation of w/*+1 ~ Elk " plk i ® piil

ki1
using SVD — adaptive rank r} selected using cross validation

r * r'd—1

=3 .. Z > P ®...®p i P, ® O P 1

=1 =1 ig—1=1



[llustration for TT approximation: Borehole Function

Borehole function models water flow through a borehole:

27TX3(X4 — X6)

r(Xz) 2XeXa Xa
og( ST iogresian T

u(X) =

X = (rWa r7 TLI7 Hua T/a H/7 L7 KW)

rw N(0.1,0.0161812) | Radius of borehole

r N(0,1) Radius of influence

Ty | U(63070,115600) | Transmissivity of upper aquifer

H, | U(990,1110) Potentiometric head of upper aquifer
T U(63.1,116) Transmissivity of lower aquifer

H, U(700, 820) Potentiometric head of lower aquifer
L U(1120, 1680) Length of boreholee

Kw | U(9855,12045) Hydraulic conductivity of borehole




[llustration for TT approximation: Borehole Function

Table: Borehole function. Relative test error of canonical representation in R, and TT
representation in 77, with isotropic rank and rank adaptation with training sample sets
of sizes Q@ = 50,102, 10%, 10*.

| format | rank | test error |
Q=50 Linear 8.610 2
Canonical 3 261073
TT / isototropic rank | (2222222) | 3.01073
TT / adapted rank (2442211) | 5.910~4
Q=100 Linear 1.41072
Canonical 7 5.410~4
TT / isototropic rank | (2222222) | 511074
TT / adapted rank (2332311) | 49104
Q=1000 Linear 221077
Canonical 12 5.11075
TT / isototropic rank | (3333333) | 6.810°°
TT / adapted rank | (4334422) | 551077
Q=10000 Canonical 7 3.610°°
TT / isototropic rank | (5555555) | 7.5107
TT / adapted rank (2244433) | 291077




lllustration: High Dimensional Integration

Quantity of Interest: E(u(X,...,Xq))
Sparse low rank approximation: u(Xi,...,Xg)~ > ' Hi:l vE(Xk)
E(u) ~ 27 I E(v(X0)

| Molecule [ Sparsity+Low Rank | Low Rank | Monte Carlo |

H,0 (d = 3) 100 150 7 % 10°
H,CO (d = 6) 450 4000 -
CHy (d =9) 3000 - -
GoHs (d = 12) 12000 ] -

Samples for < 1cm™? error on energy and frequency corrections
P gy y



Outline

Tensors for Big data Compression



Compression

Tensors for Big Data Compression

Original

Sampling based u(X Z Z @, .5 H VK (Xk)

surrogate P Py
construction
> _—
Gri;J‘Size: # Parameters = 494800 (3.95 MB)
500 x 500 x 500 x 400
(400GB)

Surrogate
u(X) = Z Zau g Hw (Xk)  evaluation

=1 ig=1




Compression

Randomized Least Squares

Minimization Problem Leverage Scores

min[|®v — uf2,® € R9", Q> n Q
KER ¢:ZU,‘U,‘®V;
. j=1
neliRnnHMd)v — Mu2,M e R**". S < @ Leverage score of ®(i,:) = ||u;||3

Fast Johnson Lindenstrauss Transformation

e Diagonal Flip: D,D € R™" diag(D) = +1
e Fast Mixing: F
®" = SFDo e Uniform row sampling: S

min|[®*v — u*||>
veR”
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Compression

lllustration: Randomized Least Squares

Ishigami Function

u(X) = sin(X1)+7sin’(Xz2) + 0.1X5'sin(X1)

Xi ~ U[—m, 7]

Approximation space: ®i:1]P’(1k)2

107!

1072

1073

104

——Leverage score sampling

——Random sampling

300

500 800 1000 1500
(Sample Size - # basis)

Random Sampling

20

[

# Samples
=

5
0
0 0.2 0.4 0.6 0.8 1
Leverage score
60 Leverage score with mixing
80
2
2 60f
@40
BN
20
0
0 0.2 0.4 0.6 0.8

Leverage score
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Compression

Data Science Framework

Unknown Target Function
u:T-Y

Training Data
(1 V1), (X3 ¥2)s s Gy, V) Error Measure

Learning
Algorithm

Final Hypothesis
— o i~u

Hypothesis Set
H




Compression

Data Science Framework

Unknown Target Function
u:L->Y

Training Data
(e, y1)s (0, 1), - ey Yy) Error Measure

Learning
Algorithm

Final Hypothesis
—_— o i~u

Hypothesis Set
H

* Sparse Canonical Tensor
* Sparse Tensor Train




Compression

Data Science Framework

Unknown Target Function
u:L->Y

Training Data
(xpyl), (xz,}’z), cees (XN.YN)

Error Measure

Learning
Algorithm

oA

Final Hypothesis
i~u

Hypothesis Set
H

* Sparse Canonical Tensor * Sparse Alternating Least Squares
* Sparse Tensor Train + Randomized Least Square




Compression

Data Science Framework

Unknown Target Function
u:L->Y

Training Data
(xpyl), (xz,}’z), cees (XN.YN)

Error Measure

Learning
Algorithm

oA

Final Hypothesis
i~u

Hypothesis Set
H

+ Data Compression

( * Sparse Canonical Tensor) [- Sparse Alternating Least Square:
« Computational Sciences

* Uncertainty Quantification
S
* Sparse Tensor Train + Randomized Least Square J




Outline

Future research and teaching
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Clustering and Classification

e Objective: Piecewise low rank approximation using domain decomposition for
irregular functions

e Joint work with O. Le Maitre (CNRS) and O. Knio (Duke)
e Consider a function that has 'domain wise' low rank approximation

DB: ed%e abdel Re13200 246K Ee

Figure: Manhattan function

34 /42



Geometric Clustering

Clustering algorithm

Initial Samples
e Sample the initial sample set K
e Repartition the samples in K clusters
Kk, 1 < k < K using K—means clustering
based on minimizing overall geometric
intracluster distance

mmz G2 (Kx) After Clustering
Z lye = 7€
qEICk
(Kk) # Z Yq
qGICk

35 /42



Clustering Scheme

e Fit a low rank model v, in each cluster
e Solve
min TR = 3 ulya) — viel ) +7llve — FKRIP

K
qeEU;_, Ky

over the set of clusters

o |u(yq) — vi,(vq)| is estimated using cross validation if g € Kk

Before minimization After minimization

36 /42



Merging Scheme

For adjacent clusters k, k’
e Compute A(k, k') = R(Kx UKw) — R(Kk) — R(Kw); k,k' e K
e Merge if A(k,k') <0

37 /42



Classification

Global approximation using nearest neighbour search

e How to decide the cluster of a new point y?
e Determine the cluster membership of n nearest neighbours of y

e Set the cluster membership of y equal to maximum cluster membership amongst
n neighbours

Error v/s Sample size (using Canonical low rank model)

—— Custering
—— Without Clustering

0.25

500 1000 1500 2000 2500 3000 3500
Sample size

38 /|42



Research Directions

(1,....di2) _(d2#1,....d) 9] +
0 Gd) b o
1 7
o.(::,;..,d) o oo O
3 O\ . 2
@1 d o o o

e Tensor based compression of hyper

O oo 00 © .
T2 d parameters in deep networks

(@1)
e Connections between mathematical
structures of tensors and Neural

Networks

e Choice of new hypothesis sets
(Hierarchical Tucker)

e New optimization algorithms (e.g.
Stochastic Gradient Descent)

39 /42



Teaching

Contribution to Existing Courses

e BTech Courses

O Linear Algebra | and Il (IC104 and 1C152)
0 Probability and Statistics (1C105)

e MTech Courses

O Linear Algebra (MA501)
0 Numerical Techniques (MA507)
0 Numerical Methods and Computing (MA601)

Introduction of New Courses

e BTech Courses

O Introduction to Data Science
O Algorithms in Machine Learning

e MTech Courses

O Uncertainty Quantification in Predictive Computing
O Multilinear Algebra for Data Science

40 / 42
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