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Intro Low ra nk Sparsity Compression

Data Science Framework

Unknown Target Function
Y = u(Xl, ...,Xd)

u

Uncertainty Quantification

• Input/output are random
variables

• Number of inputs is large
• Target function is

expensive to evaluate

Training Data

(x1, y1), (x2, y2), • • • , (vN, YN)
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Intro Low ra nk Sparsity Compression

Data Science Framework

Big Data

XN

Unknown Target Function
Y = u(Xl, ...,Xd)

u

• Number of training data is
large
• Computation and storage

becomes intractable

Training Data

(x1, y1), (x2, y2), • • • , (xN, yN)

Learning from Data

Learned function

u



Intro

Application in Computational Sciences
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104A5.

•• •

x = — Ar(o, 1)

Quantity of Interest: E(u(Xi, • • • Xd))

• u(X) is anharmonic potential energy surface
• Dimension of u(X): d = (3 x #atoms — 6)

❑ Water, d = 3
❑ Benzene, d = 30

Approximation of high dimensional functions is difficult
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Intro Low rank Sparsity Compression Perspectives

Curse of Dimensionality

Linear approximation

u(X) = E upcki(X)
i=i

where Oi(X) constitute a suitable basis (ex. polynomial, wavelets etc)

Construction of multidimensional basis

• Choose n basis functions {007,=1 in dimension 1 < k < d

u(X1, . . . , Xd) = E E • • • ocid(Xd), E 111

• Number of coefficients: N = rid

Can smoothness help?

• If u E C5, number of coefficients to achieve accuracy E

N = 0(Cd /5) (Curse of dimensionality) 4/42



intro _ow rank Sparsity Compression Perspectives

Remedies: Structured approximations

• Low effective dimensionality 1: u(X) mainly depends on few parameters
XK, KC{1,...,d}

• Low-order interactions 2: Higher order interaction terms have negligible impact

• Sparsity 3: u(X) is sparse on the basis {0i(X), i E A}

u(X) = E Loipo, nn c A, #Ar, = n
iEn„

• Low rank 4 : u(X) can be well approximated using separated representation

u(Xl, . . . , Xd) 4(Xci)

Key idea: Combine low rank and sparsity

1Constantine '10, Tippireddy'12.
2Blatman'09
3Doostan'll

4Nouy'09
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Intr0 Sparsity

Big (Scientific) Data
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3 R. Sankaran, E.R. Hawke., J.H. Chen, Proc. Comb. inst., 2007, vol. 31.
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Intro

Compression of Big Data

Motivation

• Data sizes have already outpaced hardware resources

• Compression, even lossy, seems inevitable for

❑ Data archival
❑ Data analysis
❑ Data sharing

• Scientific data usually consist of field data that is smooth and continuous over a

domain

Original r = le-4 r = le-2

400X Compression 20000X Compression
7 / 42



Intro Sparsity Compression 'erspectives

Tensor Based Compression

Compression of Structured Data

a N3 x R3

R, X R2 X R3

N 1 x N, x N 3

v

Compression of Unstructured Data

Sampling

Nz x R2

Tucker decomposition
[Kolda'17]

x,,,g®uovovv

X: Structured data tensor
g: Core tensor
U, V, W: Factor matrices

Machine Learning
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Intro Low rank $parsity Compression Perspectives

Canonical rank and tensor format

Canonical rank

• rank(u) < r : u(X) = Ei , (xi)... uF,I(Xd)  = (EL, 14 0 • • • ® u(1) (X)

r Canonical Rank-r

1Zr = {V = 0 ... 0 ; = 0(X07 pi
i=i

• Parametrization: v = FR, (p1, pd); pk E RPk xr

Properties

• 7Z, is not closed for d > 2 and r > 1

• Best approximation problem is not well posed —> numerical instabilities

11 / 42



Low rank Sparsity Compression Perspectives

Tree based rank and tensor formats

K-rank

• rankK(u) < rK, u(X) = Ei% UKVOLIKc(XKv); K C {1, , d}

Tree based rank

• rankK(u) < rK, VK E T c 2°

where T is a tree of dimensions

Hierarchical Tucker

{1,2,3,4}

/

{1,2} {3,4}

{1} {2} {3} {4}

Tensor Train

{1,2,3,4}

{1} {2,3,4}

{2} {3,4}

{3} {4}



Intro Low rank

Tensor Train format

Tensor Train rank

TT = fti : rankp+1,...,d1(u) < < i < d — 1}

13 / 42



Low rank

Tensor Train format

1...d

1 L..d

•2

d — 2 d — 1, d

d —1

Tensor Train rank

TT = fti : rankp+1,...,d1(u) < < i < d — 1}

rl

= E 1 2 ... d®
il=1
r1 r2 rd_l

1 2 d
v = E ® E piii2 0 • • . ® E pd-12id 1 Pid 1,1

i2=1 id _1=1

Tensor Train tensor [Oseledets'12]

}()(X07-13,k 1'k

= 1
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Low rank

Tensor Train format

1...d

1 L..d

•2

d — 2 d — 1, d

d — 1

Tensor Train rank

7-7; = { v : ran , u) < ri,1 < i < d — 1}

rl

= E 1 2 ... d®
il=1
rl r2 rd_1

1 2 d
= E E piii2 Lev • • . ® E pd-1- 2id Pid 1 ,1

=1 i2 =1 id _1=1

Tensor Train tensor [Oseledets'12]

TTr = {v =E®
iEE k

v
Pik—lik V(‘k) Pik—lik

— {i = (io, il, • • • , id-11 id); E {1, • • • , rk}}; ro = rd =

• Parametrization: v = Fr(p1,..., pd); pk ORPkyk—lxrk



Intro Low rank

Low rank formats: Approximation

Minimization problem

min ll u — Fmr(p1 Pd)112Q with llu — vll2Q = E lu(y,) — v(yol2pl,•••,pd

Alternating least-squares (ALS)

• For r E R

o For 1 < i < d and for fixed pij i

q=1

min Fmr(P1, • • • , Pi, • • • ,Pd)112Q

• Select optimal rank in R using cross validation (K-fold)

14 / 42



Low rank

ALS approximation

Canonical format

• Direct construction: Solve min llu — vd4
vcRr

P.
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Canonical format

• Direct construction: Solve min llu — vd4
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• Direct construction: Solve min llu — vd4
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Low rank

ALS approximation

Canonical format

• Direct construction: Solve min Ilu — va
vE72,

• Greedy construction

E Set uo = 0
o For r > 1, Solve min Ilu — ur_i — it112Q

— veRi



Low rank Sparsity Perspectives

ALS approximation

Canonical format

• Direct construction: Solve min llu —
VER,

• Greedy construction

D Set /JO = 0
❑ For r > 1, Solve min llu — ur_1 —

vETZ1
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Low rank Sparsity Perspectives

ALS approximation

Canonical format

• Direct construction: Solve min llu —
VER,

• Greedy construction

D Set /JO = 0
❑ For r > 1, Solve min llu — ur_1 —

vETZ1
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Low rank

ALS approximation

Canonical format

vE72,
• Direct construction: Solve min —

• Greedy construction

E Set uo = 0
o For r > 1, Solve min Ilu — ur_i — it112Q

— veRi

P PA.

4

P IPz



Low rank

ALS approximation

Canonical format

• Direct construction: Solve min —
vERr

• Greedy construction

E Set uo = 0
o For r > 1, Solve min Ilu — ur_i — it112Q

— vER1

Tensor Train format

• Solve min —
VETT,

• Combinatorial problem for the selection of rank
15 / 42



Low rank Sparsity pression Perspectives

Illustration: Low Rank Approximation of Potential Energy

Potential Energy Surface

• Approximation Space: Odk_1P1:1

• Rank: 1 < r < 30

• E =   1.0000

100

1O-2

0.9594

104.45° 110

Water (d = 3)

10 50 100 150200 300
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Low rank Sparsity pression Perspectives

Illustration: Low Rank Approximation of Potential Energy

Potential Energy Surface

• Approximation Space: Odk_1P1:1

• Rank: 1 < r < 30

• E =   1.0000

101

10°

10-1

10-2

10-3

Formaldehyde (d = 6)

0.1 0.5 1 1.5 2

51103

4 6 8 10
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Low rank

Sampling and Computational Complexity

Sampling Complexity

• Approximation of multivariate functions in polynomial spaces [Chkifa'13]

Q (#A)2 ; A : Basis set

• Question: Number of samples w.r.t number of parameters in low rank format?

Q ̂ f (d, r, n)

• Conjecture: For canonical rank-r format in polynomial spaces [Rai '15]

❑ Greedy: Q dr(n)2
❑ Direct: Q d (nr)2

Computation Complexity

• Complexity of (Direct) ALS: O(r2 dn2 Q) O(r3 d2 n4)

• Complexity of (Greedy) ALS: O(dn2 Q) O(rd2 n4)

Can we further reduce the number of samples?

17 / 42
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Outline

Sparsity in low rank tensor formats

El Tensors for Big data Compression

la Future research and teaching
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Sparsity Compression

Sparsity in linear approximation

Least-squares with sparse regularization

u(X) = E v,o1po = 0(x)Tv
s=1

• If u(X) is sparse on the basis set {¢v}r_i

mill Hu 4)/1112
2
SI* Ilv110 m or min 11u 0vl1Z

yea. vEuP

• Convexification

mR. llu - 4: 
2

1112 AlIV Ill
vE 

Selection of A

• Least Angle Regression for solving sparse least-squares [Efron'04]

• Fast leave one out cross validation for selection of optimal sparse vector

19 / 42



Intro Lova rank Sparsity Compression Perspectives

Illustration: Sparse approximation of Potential Energy

Approximation Space: ®LIPlz̀t Approximation Space: 031-,21111
Number of basis = 1953125

iol

Number of basis = 244140625

------ _

° -a ." 4

—CH, (CS)
- - CH4 (Low rank)
—C1H4 (CS)
- - C1H4 (Low rank)

o
o

o
o

o
o
o

o o
o o
o o
irr

O
o
o
o

Sample Size 20 / 42



Low rank Sparsity Compression Perspectives

Approximation in sparse tensor formats

Sparse low rank tensor formats ram-sparse

ram-sparse 
11/ = FM()111327 113d); 111340 < Mk; 1<k<d}

Alternating least-squares with sparse regularization

• ALS with sparse regularization

min 11u— 
d 2

FM(13 • s.t. 1113
k
110 < M k

21 / 42



Low rank Sparsity Compression Perspectives

Approximation in sparse tensor formats

Sparse low rank tensor formats Mm-sPar"

ram-sparse = 
{ = FM 031, 132) 13d); Ilpk MO < mk; 1 < k < d}

Alternating least-squares with sparse regularization

• ALS with sparse regularization

min ,IIFNI(P
1 

,Pc1)112Q
k=1

Akmpl.

21 / 42



Low rank Sparsity Compression ives

Approximation in sparse tensor formats

Sparse low rank tensor formats Mm-sparse

m - s p a rse Iv = FA4(131, P2, • • • >13d); 1113110 Mk; 1 < k < d}

Alternating least-squares with sparse regularization

• ALS with sparse regularization

d

min d)112Hu — + AkIlPk lll

k=1

2
Pr



Low rank Sparsity Compression ives

Approximation in sparse tensor formats

Sparse low rank tensor formats Mm-sparse

m- s p a r se Iv = FA4(131, P2, • • • >13d); 1113110 Mk; 1 < k < d}

Alternating least-squares with sparse regularization

• ALS with sparse regularization

d

min d)112Hu — + Ak

k=1



Low rank Sparsity Compression ives

Approximation in sparse tensor formats

Sparse low rank tensor formats Mm-sparse

m-s p a r se Iv = FA4(131, P2, • • • >13d); 1113110 Mk; 1 < k < d}

Alternating least-squares with sparse regularization

• ALS with sparse regularization

d

min d)112Hu — + AkIlPk lll

k=1



_ow rank Sparsity Compression Perspectives

Illustration:Checkerboard function
Rank-2 function:

2

u(Xi, X2) = E 41)(x1)42)(x2)
i=1

(a) w11)(X1) (b) 1441)(Xi)

S

(C) l442)(X2 (d) 42)(X2)

Approximation of u in VF->i 82p2
Piecewise polynomials of degree p defined on a uniform partition of s intervals:

X u(o, 1)

Sk ED

Pk — 13,5
22 / 42



Sparsity Compression Perspectives

Illustration: Checkerboard function

Checkerboard function (Q = 200)

Sparse Low rank Sparse low rank

Approximation space Error Error Rank Error Rank

1I12,6 0 IP2,6 , P = 182 0.5591 0.664 2 2.41 10-13 2

IP2,12 0 IP2,12, P = 362 0.9867 - - 1.50 10-12 2

IP10,6 0 IP10,6, P = 662 1.6575 - - 7.88 10-13 2

With few samples:

• Sparse low rank gives quasi-exact recovery

• Rank 2 is retrieved 

23 / 42



Lovv rank Sparsity Compression Perspectives

ALS in Tensor Train Format

For 1 < k < d — 1

• Compute sparse wk,k+1 by solving

min — Frk(131, • • • , 
wk,k+1, p

d Ak vec
(wk,k+1,

wk,k+1

• Compute truncated low-rank approximation of wk,k+1 pl,‘ nk+1

lk-1ik rikik+1

using SVD —> adaptive rank rk selected using cross validation

V =

6=1 ik=1

rd —1

1 k+1
Plil 0 • • • 0 Pik ® ® • • • 0 Pid 11

24 / 42



Intro Low Sparsity Perspectives

Illustration for TT approximation: Borehole Function

Borehole function models water flow through a borehole:

u(X) = 
27X3(X4 — X6)

log()(1+ ,3
log( r

2X X
X(421)?Xs 

+ X X3
5

X = (r,„„ r,Tu, Hu, Th L, K,v)

r

H
7-1
Hi
L
K„„

N(0.1, 0.0161812)
N(0, 1)
11(63070, 115600)
11(990, 1110)
1463.1,116)
11(700, 820)
11(1120,1680)
11(9855, 12045)

Radius of borehole
Radius of influence
Transmissivity of upper aquifer
Potentiometric head of upper aquifer
Transmissivity of lower aquifer
Potentiometric head of lower aquifer
Length of boreholee
Hydraulic conductivity of borehole
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Intro Low Sparsity Perspectives

Illustration for TT approximation: Borehole Function

Table: Borehole function. Relative test error of canonical representation in 7Z, and TT
representation in TT with isotropic rank and rank adaptation with training sample sets

of sizes Q = 50,102,103,104.

format rank test error

Q=50 Linear 8.610-2
Canonical 3 2.610-3

TT / isototropic rank (2 22 22 2 2) 3.010-3
TT / adapted rank (2 44 22 1 1) 5.910-4

Q=100 Linear 1.410-2
Canonical 7 5.410-4

TT / isototropic rank (2 22 22 2 2) 5.110-4
TT / adapted rank (2 33 23 1 1) 4.910-4

Q=1000 Linear 2.210-4
Canonical 12 5.110-5

TT / isototropic rank (33 333 33) 6.810-6
TT / adapted rank (4 3 344 2 2) 5.510-7

Q=10000 Canonical 7 3.610-5
TT / isototropic rank (5 55 55 5 5) 7.510-7
TT / adapted rank (2 24 44 33) 2.910-7
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Low rank Sparsity Compression Perspectives

Illustration: High Dimensional Integration

Quantity of Interest: E(u(Xi, • • • , Xd))

Sparse low rank approximation: u(Xi, • • • Xd) Eri=111kd vik (Xk)

E(1-1) CiEri=lfik=iEW(X0)

Molecule Sparsity+Low Rank Low Rank Monte Carlo

H20 (d = 3) 100 150 7 x 105
H2CO (d = 6) 450 4000
CH4 (d = 9) 3000 -
C2H4 (d = 12) 12000

# Samples for < 1cm-1 error on energy and frequency corrections

27 / 42
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_ow rank Sparsity Compression Perspectives

Tensors for Big Data Compression

Original

Sampling based
surrogate
construction

Grid Size:
500 x 500 x 500 x 400

(400GB)

rl rd

upo E E • • • ,p,t pc),=1 id=1 H 
k=1

# Parameters = 494800 (3.95 MB)

e =le-2

rd d Surrogate
u(X) *;<k (Xk) evaluation

i3.=1 id=1 k=1

29/42



Compression

Randomized Least Squares

Minimization Problem

min14)v — u112,0 E RCixn, Q» n
vER"

mindMOv — MuM2,M E RS" S < Q
vER"

Fast Johnson Lindenstrauss Transformation

mill110*v 1-112vERn

= S.FD0

Leverage Scores

(I) = vi

j=1

Leverage score of (1)(i,:) =

• Diagonal Flip: D, D E Rn" diag(D) = ±1

• Fast Mixing:

• Uniform row sampling: S



Low rank Sparsity Compression srspectiyes

Illustration: Randomized Least Squares

Ishigami Function

u(X) = sin(X1)+7sin2(X2)+0.14sin(Xi)

U[-7r, 7r]

Approximation space: 014_1014)2

—Leverage score sampling
—Random sampling

10-2_

10-1

-

300 500 800 1000 1500
(Sample Size - # basis)

20

15

§10

5

Random Sampling

oo

100

0.2 0.4 0.6 0.8
Leverage score

Leverage score with mixing

80 -

60 -

40 -

20 -

0.2 0.4 0.6 0.8 1
Leverage score
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Sparsity Compression

Data Science Framework

Unknown Target Function

u :

Training Data

(x1, y1), (x2, y2), • • • ,

Hypothesis Set

Learning

Algorithm

Error Measure

Final Hypothesis
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Data Science Framework
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X

Learning

Algorithm

Error Measure
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fi u
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Sparsity Compression

Data Science Framework

Unknown Target Function

u : —>

Training Data

yi), (x2, y2), • • • , (xN,

Hypothesis Set

X

Learning

Algorithm

Error Measure

Final Hypothesis
fi u

  L ncertainty QuantificatioI
• Sparse Canonical Tensor_j C • Sparse Alternating Least Squares

Data Compression
• Sparse Tensor Train • Randomized Least Square

. Computational Sciences
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Perspectives

Clustering and Classification

• Objective: Piecewise low rank approximation using domain decomposition for
irregular functions

• Joint work with O. Le Maitre (CNRS) and O. Knio (Duke)

• Consider a function that has 'domain wise' low rank approximation

DB: edge diode! Re13200 246K E e
Cycle:0

Figure: Manhattan function



Sparsity Compression Perspectives

Geometric Clustering

Clustering algorithm

• Sample the initial sample set 1C

• Repartition the samples in K clusters

kk, 1 < k < K using K —means clustering
based on minimizing overall geometric
intracluster distance

K

min E G2 (Kk)
k=1

G2(Kk) = E xick)112
qEkk

1
)7(Kk) = 

#Kk
E Yq
gElck

Initial Samples

After Clustering

35 / 42



ow rank Sparsity Perspectives

Clustering Scheme

• Fit a low rank model vIck in each cluster

• Solve

min R(ICk) = E 1u(yq) — vIck(yq)12 7Ilyq ?(ICk)li2

cleuLlick

over the set of clusters

• iu(y,) — vKk(yci)l is estimated using cross validation if q E

Before minimization After minimization

36 / 42



Perspectives

Merging Scheme

For adjacent clusters k,

• Compute A(k, k') = R(Kk U ICk,) — R(Kk) — R(Ck,); k, E

• Merge if A(k, < 0

08

37 / 42



ry Perspectives

Classification

Global approximation using nearest neighbour search

• How to decide the cluster of a new point y?

• Determine the cluster membership of n nearest neighbours of y

• Set the cluster membership of y equal to maximum cluster membership amongst
n neighbours

Error v/s Sample size (using Canonical low rank model)

- Custering
- Whhout Clustering

o.

1000 1500 2000 2500 3000 3500

Sample size

38 /42



Perspectives

Research Directions

0 (2, .d)

(1, ..,d/26 0(d/2+1,...,d)

OP co

0

2 0(4 d) 9 o o o
0

(d-1) d O • • b
0 0 0 0 0 0
1 2 (d-1) d

• Choice of new hypothesis sets
(Hierarchical Tucker)

• New optimization algorithms (e.g.
Stochastic Gradient Descent)

• Tensor based compression of hyper
parameters in deep networks

• Connections between mathematical
structures of tensors and Neural
Networks
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Perspectives

Teaching

Contribution to Existing Courses

• BTech Courses

O Linear Algebra I and 11 (IC104 and IC152)

E Probability and Statistics (IC105)

• MTech Courses

E Linear Algebra (MA501)

❑ Numerical Techniques (MA507)

E Numerical Methods and Computing (MA601)

Introduction of New Courses

• BTech Courses

E Introduction to Data Science

O Algorithms in Machine Learning

• MTech Courses

E Uncertainty Quantification in Predictive Computing

O Multilinear Algebra for Data Science
40 / 42
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