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Background
• Warm Dense Matter: a personal account
• "Idealized Slab Plasma"

Optical reflectivity and transmission measurements
Model-independent, femtosecond pump-probe measurements of electrical conductivity

of single-state, warm dense gold

Frequency domain interferometry measurements
Phase shift is sensitive to expansion hydrodynamics
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IDEALIZED SLAB PLASMA (ISP)
=

New approach realize single-state measurements on WDM
• Planar plasma that can be considered as a single, uniform state in which any residual non-

uniformity has insignificant impact on the measurement of its uniform properties
• The state is characterized by direct measurements

Single-state measurement of electrical conductivity based on fs-laser heating
of an ultrathin freestanding foil
• Isothermal heating produced by

laser skin-depth deposition and
ballistic electron transport

• Isochoric condition maintained by
material inertia and strength
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EXPERIMENT — CONCEPTUAL

lsochoric & uniform heating of sample
Thickness of ISP = initial thickness of sample

. Mass density of ISP = Au initial density

Pump laser {R,T}
Energy density increase Ac

Probe laser {R*,T*}
• AC conductivity a. = CYr + iai is given by

solution to the Helmholtz equations
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PROBE MEASURMENT

In-situ calibration of reflectivity, transmission
• Mitigates problem of shot-to-shot variations in probe pulse

• Probe data: R*H/R*c , T*Hirc
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S-POL PROBE -CTIVITY A
I -
Probe {R*,T*} reveals three stages of development
• An initial transient induced by laser heating
• Appearance of a quasi-steady-state
• Followed by rapid changes (target disassembly)
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ISP BEHAVIOR AT BEGINNING I

Obtained single-state AC conductivity from { R*, T*}
values at start of quasi-steady-state stage
• Single-state measurement of e-i collision time, DC

conductivity and average ionization
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FIRST TF-- --)F THEORY: COMPA

Comparison is unfair
• Data are for a highly non-equilibrium system

• Sesame describes equilibrium properties
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P-POL PROBE RF-LECTIVITY A

Showed same 3 stages of temporal evolution
P-pol results corroborate S-pol conductivity results
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FREQUENCY DOMAIN INTERF:

Measurement of expansion
velocity due to change in the
path length

pump pulse

to spectrometer
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FDI REVEAL SIMILAR STAGES 0'

FDI phase shift measurements
• Able to detect small changes in phase shift (— 10 mrads)
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QUASI-STEADY-STATE BEHAVIO
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DURATION OF THE QUASI-STE
-

To understand the onset of hydrodynamic disassembly
• Clear functional dependence on excitation energy

• Assess electron-ion equilibration process with modified Two-Temperature model
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Results of model calculation show reasonable agreement with data
• The critical energy density for Au is found to be

ED = (2.9±0.3)x105 J/kg

6.4x104 J/kg = CA4 < ED < Ey = 1.7x106 J/kg

2 106

QSS

ti t
2

.00

.••

T
e

E.

E
D

of'
ano .

0 5 10
Time (ps)

15

106 
-01

cra
5 10'

20
0

30

25

20

15

10

5

0

105

• I • I • • • I

• AS1:1 S-pol data

g=1.9x10" W/m3K, 61)=2.63:105 J/kg

g=2.2x10' W/m3K , 6D=2.9x105 J/kg

g=2.5x1016 W/m3K, 6D=3.2x105 J/kg

++

• I I • EMI • II I • N• II I II I ENE

106 107
AE (J/kg)

1o8

T. Ao , Y. Ping, K. Widmann, M. Foord, D. Price, E. Lee, H. Tarn, P. Springer & A. Ng, PRL 96, 055001 (2006)



SUMMARY

Demonstrated Idealized Slab Plasma concept based on isochoric heating of
an ultrathin foil using fs laser

Obtained single-state data on AC conductivity, DC conductivity, electron-ion
collision time and average ionization

Results for comparison with first principle theories

Correlation of solid-plasma phase transition
Measured critical disassembly energy density

This work formed foundation for exploration of basic properties under
extreme conditions


