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Background
* Warm Dense Matter: a personal account

* “Idealized Slab Plasma”

Optical reflectivity and transmission measurements
* Model-independent, femtosecond pump-probe measurements of electrical conductivity
of single-state, warm dense gold

Frequency domain interferometry measurements
* Phase shift 1s sensitive to expansion hydrodynamics
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___DEALIZED SLAB PLASMA (157) L

New approach realize single-state measurements on VWDM

 Planar plasma that can be considered as a single, uniform state in which any residual non-
uniformity has insignificant impact on the measurement of its uniform properties

* 'The state 1s characterized by direct measurements

Single-state measurement of electrical conductivity based on fs-laser heating

of an ultrathin freestanding foil 150 fs, 800nm

* Isothermal heating produced by r Probe Laser
laser skin-depth deposition and A 30nm Au
. 150 fs, 400nm :
ballistic electron transport :
: .. .. Pump Laser . :
@ ISOChOfIC Condltlon malntalned by + .................................. > T
material inertia and strength / S
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A. Forsman, A. Ng, G. Chiu, and R.M. More, PRE 58, 1248 (1998)



_EXPERIMENT 1S CONCEPTUAL LI

Isochoric & uniform heating of sample 2

* 'Thickness of ISP = initial thickness of sample H I
*  Mass density of ISP = Au initial density D i
KDP
Pump laser {R,T} photodiodes o —use
* Energy density increase Ag i 200 " %3 o
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In-situ calibration of reflectivity, transmission

* Mitigates problem of shot-to-shot variations in probe pulse

° Probe data: R*;;/R*. , T*,/T*. 800 nm 400 nm Heated region
probe pump R, Ty}

Cold region
R, T"¢}

diameter (625 * 15) ym
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Value (counts)

Probe {R*,T*} reveals three stages of development

* An initial transient induced by laser heating

* Appearance of a quasi-steady-state
* Followed by rapid changes (target disassembly)
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2
Obtained single-state AC conductivity from {R*, T*} '
values at start of quasi-steady-state stage 2l 1

°* Single-state measurement ot ¢ collision time, DC : Bt : H$+
conductivity and average ionization . § |
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__FIRSTTEST OF THEORY: COM P/

Comparison is unfair
* Data are for a highly non-equilibrium system

* Sesame describes equilibrium properties
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Showed same 3 stages of temporal evolution
P-pol results corroborate S-pol conductivity results
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Measurement of expansion A
. . S
velocity due to change in the 400nm Michelson
Interferometer

path length
pump pulse
to spectrometer *
% = I'4
‘A/' probe
pulse
reference
9 pulse
Au foil

Spectrometer
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FDI phase shift measurements
* Able to detect small changes in phase shift (~ 10 mrads)
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___ DURATION OF THE QUAS!- T

To understand the onset of hydrodynamic disassembly
* Clear functional dependence on excitation energy

* Assess electron-ion equilibration process with modified Two-Temperature model
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Results of model calculation show reasonable agreement with data
* 'The critical energy density for Au is found to be
ep = (2.910.3)x10° J /kg
6.4x10* J /kg = £ < €p < &y = 1.7x10° J /kg
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T. Ao, Y. Ping, K. Widmann, M. Foord, D. Price, E. Lee, H. Tam, P. Springer & A. Ng, PRL 96, 055001 (2006)
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Demonstrated ldealized Slab Plasma concept based on isochoric heating of
an ultrathin foil using fs laser

Obtained single-state data on AC conductivity, DC conductivity, electron-ion

collision time and average ionization
* Results for comparison with first principle theories

Correlation of solid-plasma phase transition
* Measured critical disassembly energy density

This work formed foundation for exploration of basic properties under
extreme conditions



