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2 Motivation

• In complex engineering problems, validation
can often be subdivided into tiers.

• System, subsystem, benchmark, unit

• Recognizes that the complexity of experiments
varies, and that the accuracy and quantity of
their data are different.

...gII...

Demonstration of validation hierarchy1

1. Oberkampf, W. L., and Roy, C. J., 2010. Verification and Validation in Scientific Computing. Cambridge University Press. Cambridge, UK. pg. 28.
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Background and Theory
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4 Model Calibration,Validation, and Prediction

SQA
Solution

Verification
Code

Verification
Calibration Validation

Prediction
with

Uncertainty

• After code bugs and numerical errors have been minimized via SQA and
verification, the remaining sources of uncertainty must be quantified.

• Calibration — parameter uncertainty and measurement errors

• Validation — model form errors

• Prediction — total uncertainty in the model

Here, we summarize a methodology which delineates these three processes in a
consistent way while utilizing the calibration/validation pyramid.

1. Set up pyramid

2. Separate calibration and validation data

3. Iteratively perform calibration using Bayesian methods

4. Propagate parameter uncertainty through model for validation cases

5. Asses validation accuracy and/or predictive capability
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5 Calibration: Statistical Model

• The statistical model generally assumes that the experimental data is equal to some
model with zero-mean Gaussian measurement noise.

yd = ym(x, + e

• There are two primary choices for treatment of each parameter.
1. A purely epistemic parameter has one "true" value which is unknown (e.g., physical

constants). The posterior distribution represents epistemic uncertainty in the parameter
value.

2. A parameter may have combined aleatory and epistemic uncertainty. This is treated by
assigning the parameter a probability distribution which represents the aleatory
uncertainty, then the posterior density represents epistemic uncertainty in the distribution.

Both methods can employ Bayesian Calibration to obtain estimates of the desired
distributions, though they require different likelihood functions.1

1. Mullins, J. and Mahadevan, S. 2016. "Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction.'7 Verification Validation UQ, 1(1).
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6 Calibration: Bayesian Methods

• An approach for statistically inferring unknown parameter values by observing state
variables and corresponding data.

• Allows for the incorporation of prior information from previous experiments or
expert knowledge.

• Solves Bayes' formula, which formulates the desired posterior distribution in terms
of the prior distribution and likelihood function.

L(YI0)71-0(0)
n-(9Iy) =

_I® gyl6071-0(6)c119

• We employ sampling methods because (1) the denominator is difficult or
impossible to integrate and (2) the product of the likelihood and prior cannot be
easily sampled.
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7 Calibration: Markov Chain Monte Carlo

• Methods which construct a sampling-based chain whose stationary distribution is
equivalent to the desired posterior.

• Delayed Rejection Adaptive Metropolis

• Here, we use a hierarchical DRAM-within-Metropolis algorithm to statistically infer
all unknown quantities.

Priors are uninformative, with starting values determined from frequentist
maximum likelihood estimates.
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8 Validation: Uncertainty Propagation

• In most cases, a Monte-Carlo propagation is used to approximate the effect of
parameter uncertainty on model results.

• Requires a large number of samples to accurately predict distribution of the
quantity of interest (QoI), and can therefore be computationally intensive.

• Alternatively, Wilks' method can be used when comparison to safety or regulatory
limits is required. This gives very little information about uncertainty or predictive
capability.

Parameter
distributions

Simulation Qol
distribution
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9 Prediction:Validation Metrics

• Various methods to quantify the quality of code predictions in the presence of
both measurement and prediction uncertainties.

• Frequentist and Bayesian hypothesis testing

o Calculate a p-value or Bayes factor, which indicate confidence in null hypothesis.

Reliability

• The probability that the observed difference is within a small interval P(—E < D < E).

• Can be used to weight calibrated and "alternate" parameter distributions.

• Kolmogorov-Smirnov

• Maximum vertical distance between two CDFs, 0 < KS < 1

• Area Metric

• Total area between two CDFs, positive

• Many others1

1. Maupin, K. A., and Swiler, L. P., 2017. Validation metrics for deterministic and probabilistic data. Tech. Rep. SAND2016-1421.
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Demonstration
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11 Case Study

• A simple problem is selected to demonstrate the framework.

• Friction and heat transfer in smooth tubes for turbulent flow.

• The calibration pyramid has three components:
. Isothermal pressure drop experiments,

. Heat transfer experiments where pressure drop is not measured, and

. Simultaneous measurement of pressure drops and heat transfer.

Here, we perform only the calibration exercise, since application to a "real world"
problem would require more tiers in the pyramid.

n
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12 Friction

• McAdams relation: f = 0.005 + 0.5Re-°.32

• Experiments of pressure drop measurements in horizontal smooth tubes.

• Here, the statistical model is determined via initial frequentist analysis
(minimization of AIC and BIC): 01 is deterministic and 02 — N(,u, 62) .

f = 01+ 02Re-°.32

Year Author Pipe Fluid

1932 Nikuradsel Brass Water

1982 Schlichting & Gersten2 Brass Water

.1.1998 Zagarola & Smits3 r Aluminum

2002 Swanson et al.4

0.04

0.035

0.03

0.025

Stainless steel Gases, He 0.02

2015 iiFuruichi et al.5 Glass Water
0.015

1. Nikuradse, J., 1966. Laws of turbulent flow in smooth pipes. Tech. Rep. Tf 359, NACA.
Translation of Verein Deutscher Ingenieure-Forschungshqft, 356(3), October 1932.

2. Schlichting, H., and Gersten, K., 1982. Boundary Layer Theory. Springer. Berlin, Germany.
3. Zagarola, M. V., and Smits, A. J., 1998. "Mean-flow scaling of turbulent pipe flow". J Fluid Meth,
373, pp. 33-79.

4. Swanson, C. J., et al., 2002. "Pipe flow measurements over a wide range of Reynolds numbers
using liquid helium and various gases". J Fluid Mech, 461, pp. 51-60.

5. Furuichi, N., et al., 2015. "Friction factor and mean velocity profile for pipe flow at high Reynolds
numbers". Phys Fluidr, 27(9).
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13 Heat Transfer

Dittus-Boelter relation:
Nu = 0.023Re 0.8pr0.4

• Experiments of energy transfer to fluid flowing through hot smooth pipe.

• Statistical model: 03 is deterministic and 04 N(µ, 62) .

Nu = 93Re0.8Pr64

Year Author Pipe Fluid

1928 Morris & Whitman1 Steel Water & oil

1931 Lawrence & Sherwood2 Copper Water

1932 Sherwood & Petrie3 Water

1. Morris, F. H., and Whitman, W. G., 1928. "Heat transfer for oils and water in pipes". Ind
Eng Chem, 20(3), pp. 234-240.

2. Lawrence, A. E., and Sherwood, T. K., 1931. "Heat transmission to water flowing in pipes".
Ind Eng Chem, 23(3), pp. 301-309.

3. Sherwood, T. K., and Petrie, J. M., 1932. "Heat transmission to liquids flowing in pipes". Ind
Eng Chem, 24(7), pp. 736-745.

103 -
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14 Simultaneous Friction & Heat Transfer

• We use the data of Allen & Eckert for simultaneous calibration of the friction
factor and Nusselt number.

• Only five data points; sparsity of the data is typical of many engineering problems.

• The plot shows the data along with
McAdams and Dittus-Boelter relations.

• Likelihood is formulated as sum of
friction and Nusselt number likelihoods.

• Again, statistical models are formulated
via initial frequentist analysis with
minimization of information criteria.
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1. Men, R. W., and Eckert, E. R. G., 1964. "Friction and heat-transfer measurements to turbulent pipe flow of water (Pr=7 and 8) at uniform wall heat flux". J. Heat Transfer, 86(3).

4/19/2019 ASME VVS2019-5222



15 Simultaneous Friction & Heat Transfer

• First, we calibrate without using priors from separate effects data.

• Statistical model: Prandtl number is fixed, so Dittus-Boelter Prandtl exponent
becomes unidentifiable. 01 and 03 are treated deterministically, 02 N (1, a).

f = 191 + 192Re—(3.32

Nu = O3Re0.8For0.4 
0.03

• Uncertainty in 04 is not treated, so error _p 0.025

in Nusselt number grows at low Reynolds
numbers. 0.02

• Heat transfer result is calibrated to only
this data, so the bias compared to Dittus-
Boelter relation is not represented.
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16 Simultaneous Friction & Heat Transfer

• Now, calibrate using separate effects results as priors.

• Statistical model: Dittus-Boelter Prandtl exponent becomes identifiable. 01 and 93
are treated deterministically, (02, 04) N (1, E) with diagonal E.

f = 611 + 192Re-°.32

Nu = 03Re0.8Pr04

• Correctly treating uncertainty in 04, so
interval has the right shape.

Heat transfer result correctly indicates
that this data has a small positive bias.
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17 Parameter Results

• Parameters are
significantly different
between SE and IE
studies.

• Epistemic uncertainty in
parameters 91 and 03
significantly reduced by
addition of separate
effects data.

• The parameter 94 was
unidentifiable for the
integral data; addition of
separate effects data
allows it to be estimated.
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Conclusion
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19 Discussion

• Given some data set and corresponding state variables:

1. Bayesian analysis is used to find parameter estimates using a hierarchical structure with
priors.

2. The parameter estimates are propagated through the validation problem(s).

3. Quality of the predication is quantified.

Friction and heat transfer are empirical relations for the same physical process
(boundary layers/turbulence), therefore the hyperparameters are not independent.

Chilton-Colburn analogy
NuT = 0.5RePr1/3

In the future, this can be treated via a metropolis-within-DRAM hierarchical calibration,
which allows accurate estimation of the hyperparameter covariance1

1. Schmidt, K. L., 2016. "lJncertainty quantification for mixed-effects models with applications in nuclear engineering." PhD thesis, North Carolina State University.
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20 Conclusion

• Calibration to separate effects data can unidentifiability in the integral effects data
due to model form, sparse data, or related physical processes.

• Separate effects data can also decrease epistemic uncertainty in models where
integral tests have sparse data.

• It is important to not treat calibration/validation process or simulation model as
"black boxes."

• This process may break down or result in large uncertainties for cases with low
quality or quantity of data.
. Large epistemic uncertainties indicate that data is too sparse.

. Large aleatory uncertainty or noise indicate that the data is low quality.

. Can be used to direct future experimental work.

• Simultaneously calibrating to multiple datasets is mathematically equivalent to
successive calibrations with priors.
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23 Types of Distributions

• Maximum likelihood estimate (MLE): most accurate distribution, which excludes
epistemic uncertainty.

• Unconditional distribution: includes both aleatory and epistemic uncertainty

fe(9) = MOP) = 13) fp(p) dp

• In this presentation, both aleatory and epistemic uncertainty are included in all
distributions.
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24 Friction Calibration

mean std MC err tau geweke

mu(\theta_4) 0.0059238 2.4415e-07 3.7964e-09 0.90063 1
sig(\theta_4) 0.48344 1.1076e-05 2.49e-06 706 0.9999
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25 Heat Transfer Calibration

mean std MC err tau geweke

mn(\theta_2) 0.4971 0.0018767 4.5229e-05 1.1066 0.99963
sig(\theta_2) 0.030717 0.0013392 3.4161e-05 1.0807 0.99086
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4/19/2019 ASME VVS2019-5222



26 Simultaneous Calibration

mean std MC err tau geweke

mu(\theta_2) 0.482590 0.0009043 8.0967e-06 0.9714 0.99995
sig(\theta_2) 0.013545 0.0006455 6.865e-06 1.0015 0.99471
mu(\theta_4) 0.497870 0.0018685 1.8028e-05 1.0028 0.99994
sig(\theta_4) 0.031149 0.0013237 1.4554e-05 1.0371 0.99896
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