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Motivation

* In complex engineering problems, validation

* System, subsystem, benchmark, unit

can often be subdivided into tiers.

* Recognizes that the complexity of experiments
varies, and that the accuracy and quantity of

1. Oberkampf, W. L., and Roy, C. J., 2010. Verification and Validation in Scientific Computing. Cambridge University Press. Cambridge, UK. pg. 28.
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their data are different.
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Demonstration of validation hierarchy1




Background and Theory
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4 | Model Calibration,Validation, and Prediction @

2 Prediction
Solution Code . . s :
S s Calibration Validation with

* After code bugs and numerical errors have been minimized via SQA and
verification, the remaining sources of uncertainty must be quantified.

o Calibration — parameter uncertainty and measurement errors
> Validation — model form errors

° Prediction — total uncertainty in the model

* Here, we summarize a methodology which delineates these three processes in a
consistent way while utilizing the calibration/validation pyramid.

1. Set up pyramid
Separate calibration and validation data
Iteratively perform calibration using Bayesian methods

Propagate parameter uncertainty through model for validation cases

ol o

Asses validation accuracy and/or predictive capability
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s I Calibration: Statistical Model I

* The statistical model generally assumes that the experimental data 1s equal to some
model with zero-mean Gaussian measurement noise.

Ya = Ym(x,0) + ¢

* There are two primary choices for treatment of each parameter.

1. A purely epistemic parameter has one “true” value which is unknown (e.g., physical
constants). The posterior distribution represents epistemic uncertainty in the parameter
value.

2. A parameter may have combined aleatory and epistemic uncertainty. This is treated by
assigning the parameter a probability distribution which represents the aleatory
uncertainty, then the posterior density represents epistemic uncertainty in the distribution.

* Both methods can employ Bayesian Calibration to obtain estimates of the desired
distributions, though they require different likelihood functions.!

1. Mullins, J. and Mahadevan, S. 2016. “Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction.”] Verification V alidation UQ, 1(1).
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¢ I Calibration: Bayesian Methods

* An approach for statistically inferring unknown parameter values by observing state
variables and corresponding data.

* Allows for the incorporation of prior information from previous experiments or

expert knowledge.

* Solves Bayes’ formula, which formulates the desired posterior distribution in terms
of the prior distribution and likelihood function.

L(y6)m,(0)
Jo LO10)m,(6)d6
* We employ sampling methods because (1) the denominator is difficult or

impossible to integrate and (2) the product of the likelthood and prior cannot be
easily sampled.

n(8ly) =
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7 1 Calibration: Markov Chain Monte Carlo

* Methods which construct a sampling-based chain whose stationary distribution is
equivalent to the desired posterior.

* Delayed Rejection Adaptive Metropolis

* Here, we use a hierarchical DRAM-within-Metropolis algorithm to statistically infer
all unknown quantities.

* Priors are uninformative, with starting values determined from frequentist
maximum likelthood estimates.
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8 I Validation: Uncertainty Propagation

* In most cases, a Monte-Carlo propagation is used to approximate the effect of
parameter uncertainty on model results.

* Requires a large number of samples to accurately predict distribution of the
quantity of interest (Qol), and can therefore be computationally intensive.

* Alternatively, Wilks” method can be used when comparison to safety or regulatory
limits is required. This gives very little information about uncertainty or predictive

capability.

Parameter : : Qol
/\ distributions Simulation distribution
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9 I Prediction:Validation Metrics

* Various methods to quantify the quality of code predictions in the presence of
both measurement and prediction uncertainties.

* Frequentist and Bayesian hypothesis testing
° Calculate a p-value or Bayes factor, which indicate confidence in null hypothesis.
* Reliability
° The probability that the observed difference is within a small interval P(—e < D < €).

> Can be used to weight calibrated and “alternate” parameter distributions.

* Kolmogorov-Smirnov

° Maximum vertical distance between two CDFs, 0 < KS <1
* Area Metric

° Total area between two CDFs, positive

* Many others!

1. Maupin, K. A., and Swiler, L. P., 2017. Validation metrics for deterministic and probabilistic data. Tech. Rep. SAND2016-1421.
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Demonstration
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11 I Case Study

* A simple problem is selected to demonstrate the framework.
* Friction and heat transfer in smooth tubes for turbulent flow.

* The calibration pyramid has three components:
> Isothermal pressure drop experiments,
° Heat transfer experiments where pressure drop is not measured, and

° Simultaneous measurement of pressure drops and heat transfer.

* Here, we perform only the calibration exercise, since application to a “real world”
problem would require more tiers in the pyramid.

Simultaneous
Heat and
Friction

Heat

Friction .
Transfer
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12 I Friction

* McAdams relation: f = 0.005 + 0.5Re %32

* Experiments of pressure drop measurements in horizontal smooth tubes.

* Here, the statistical model is determined via initial frequentist analysis
(minimization of AIC and BIC): 8, is deterministic and 8, ~ N(u, 0%) .

f = 91 + 92R8_0'32

()

s ¥ 0.04 [— - m——
Year Author Pipe Fluid 5 Nikuradss
0.035 g o Schlichting -
3 1
1932 Nikuradse Brass Water oos O Zagarola
s 4 S L A Swanson ]
1982  Schlichting & Gersten? Brass Water Bl
e ) . 0.025 = = =McAdams 1
1998 Zagarola & Smits Aluminum Air AT
4 . T 95% Predictive
2002 Swanson et al. Stainless steel ~ Gases, He e DRAET
2015 Furuichi et al. Glass Water
0.015 |
1. Nikuradse, J., 1966. Laws of turbulent flow in smooth pipes. Tech. Rep. TT 359, NACA.
Translation of Verein Deutscher Ingenienre-Forschungshelft, 356(3), October 1932.
2. Schlichting, H., and Gersten, K., 1982. Boundary Layer Theory. Springer. Berlin, Germany. <
3. Zagarola, M. V., and Smits, A. J., 1998. “Mean-flow scaling of turbulent pipe flow”. | Fluid Mech, ’\
373, pp. 33-79.
4. Swanson, C. J., et al., 2002. “Pipe flow measurements over a wide range of Reynolds numbers 0.01 .
using liquid helium and vatious gases™. | Fluid Mech, 461, pp. 51-60. 104 10° 108
5. Furuichi, N, et al., 2015. “Friction factor and mean velocity profile for pipe flow at high Reynolds
aumbers”. Phys Fhids, 2709). Re [-]
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13 1 Heat Transfer

* Dittus-Boelter relation:
Nu = 0.023Re%8pr04

* Experiments of energy transfer to fluid flowing through hot smooth pipe.
* Statistical model: 63 is deterministic and 84 ~ N(u, 02) .

Nu = 6;Re%8Prbs

®  Maorris
. B |awrence
i : Sherwood

Year Author Pipe Fluid

1928 Morris & Whitman! Steel ~ Water & oil
1931 Lawrence & Sherwood?  Copper Water

Nu [-]

1932 Sherwood & Petrie? Copper Water

1. Mortis, F. H., and Whitman, W. G., 1928. “Heat transfer for oils and water in pipes”. Ind 2 |
Eng Chem, 20(3), pp. 234-240. 107 7]

2. Lawrence, A. E., and Sherwood, T. K., 1931. “Heat transmission to water flowing in pipes”. 7
Ind Eng Chem, 23(3), pp. 301-309.

3. Sherwood, T. K., and Petrie, J. M., 1932. “Heat transmission to liquids flowing in pipes”. Ind
Eng Chem, 24(7), pp. 736-745.

-l

102

10’
Prl Re []

10*
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14 I Simultaneous Friction & Heat Transfer

* We use the data of Allen & Eckert for simultaneous calibration of the friction

factor and Nusselt number.

* Only five data points; sparsity of the data is typical of many engineering problems.

* The plot shows the data along with
McAdams and Dittus-Boelter relations.

* Likelithood is formulated as sum of

friction and Nusselt number likelihoods.

* Again, statistical models are formulated
via initial frequentist analysis with
minimization of information criteria.

1. Allen, R. W, and Eckert, E. R. G., 1964. “Friction and heat-transfer measurements to turbulent pipe flow of water (Pr=7 and 8) at uniform wall heat flux”. J. Heat Transfer, 86(3).
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15 I Simultaneous Friction & Heat Transfer

* First, we calibrate without using priors from separate effects data.

* Statistical model: Prandtl number is fixed, so Dittus-Boelter Prandtl exponent
becomes unidentifiable. 61 and 05 are treated deterministically, 8, ~ N(u, o).

f = 91 + 92Re_0'32

Nu = §;Re®8pro4 003
* Uncertainty in 8, is not treated, so error ~_ 0025|
in Nusselt number grows at low Reynolds — |
numbers. 0.02
* Heat transfer result is calibrated to only : : j —
this data, so the bias compared to Dittus- %00 b c
Boelter relation is not represented. _400r ]
S ' ]
“ 200} ]
o
’ 1
2 4 6 8 10
Re [] x10*
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16 I Simultaneous Friction & Heat Transfer

* Now, calibrate using separate effects results as priors.

* Statistical model: Dittus-Boelter Prandtl exponent becomes identifiable. 81 and 053
are treated deterministically, (65, 8,) ~ N(u, X) with diagonal Z.

f == 91 + 92Re_0'32
Nu = O;Re®8pros 003¢

* Correctly treating uncertainty in 6y, so 0025}
interval has the right shape. - '

* Heat transfer result correctly indicates
that this data has a small positive bias.

Re [-] %10
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17 I Parameter Results

* Parameters are
significantly different
between SE and IE
studies.

* Epistemic uncertainty in
parameters 61 and 03
significantly reduced by
addition of separate
effects data.

* The parameter 64 was
unidentifiable for the
integral data; addition of
separate effects data
allows it to be estimated.
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19 1 Discussion \m)

* Given some data set and corresponding state variables:

1. Bayesian analysis is used to find parameter estimates using a hierarchical structure with
priofs.

2. The parameter estimates are propagated through the validation problem(s).
3. Quality of the predication is quantified.

* Friction and heat transfer are empirical relations for the same physical process
(boundary layers/turbulence), therefore the hyperparameters are not independent.

° Chilton-Colburn analogy
i 0.5RePrl/3
f

° In the future, this can be treated via a metropolis-within-DRAM hierarchical calibration,
which allows accurate estimation of the hyperparameter covatiance!

1. Schmidt, K. L., 2016. “Uncertainty quantification for mixed-effects models with applications in nuclear engineering.” PhD thesis, North Carolina State University.
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Conclusion Uy

* Calibration to separate effects data can unidentifiability in the integral effects data

due to model form, sparse data, or related physical processes.

* Separate effects data can also decrease epistemic uncertainty in models where

integral tests have sparse data.

* It is important to not treat calibration/validation process or simulation model as

“black boxes.”

* This process may break down or result in large uncertainties for cases with low

4/19/2019

quality or quantity of data.
> Large epistemic uncertainties indicate that data is too sparse.
o Large aleatory uncertainty or noise indicate that the data is low quality.

> Can be used to direct future experimental work.

Simultaneously calibrating to multiple datasets is mathematically equivalent to
successive calibrations with priors.
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23 I Types of Distributions

* Maximum likelihood estimate (MLE): most accurate distribution, which excludes
epistemic uncertainty.

* Unconditional distribution: includes both aleatory and epistemic uncertainty

fo(8) = f fo(81P = P)fo(p) dp

* In this presentation, both aleatory and epistemic uncertainty are included in all
distributions.

35

= e = MLE
Unconditional
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24 | Friction Calibration

mean std MC err tau geweke
mu (\theta 4) 0.0059238 2.4415e-07 3.7964e-09 0.90063 1
sig(\theta 4) 0.48344 1.1076e-05 2.4%e-06 706 0.9999
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Heat Transfer Calibration

mean std MC err tau geweke
mu (\theta 2) 0.4971 0.0018767 4.522%e-05 1.1066 0.99963
sig(\theta 2) 0.030717 0.0013392 3.4161e-05 1.0807 0.99086
mu(0,)
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26 I Simultaneous Calibration

mean std MC err tau geweke
mu(\theta_Z) 0.482590 0.0009043 8.0967e-06 0.9714 0.99995
sig(\theta_2) 0.013545 0.0006455 6.865e-06 1.0015 0.99471
mu(\theta_4) 0.497870 0.0018685 1.8028e-05 1.0028 0.99994
sig(\theta_4) 0.031149 0.0013237 1.4554e-05 1.0371 0.99896
mu(02) sig(ez)
0.486 —
0.484 [EEHS
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0'48 .-. .
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