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Abstract—The integration of communication-enabled grid-
support functions in distributed energy resources (DER) and
other smart grid features will increase the U.S. power grid's
exposure to cyber-physical attacks. Unwanted changes in
DER system data and control signals can damage electrical
infrastructure and lead to outages. To protect against these
threats, intrusion detection systems (IDSs) can be deployed,
but their implementation presents a unique set of challenges
in industrial control systems (ICSs). New approaches need to
be developed that not only sense cyber anomalies, but also
detect undesired physical system behaviors. For DER systems, a
combination of cybersecurity data and power system and control
information should be collected by the IDS to provide insight
into the nature of an anomalous event. This allows joint forensic
analysis to be conducted to reveal any relationships between the
observed cyber and physical events. In this paper, we propose a
hybrid IDS approach that monitors and evaluates both physical
and cyber network data in DER systems, and present a series
of scenarios to demonstrate how our approach enables the
cyber-physical IDS to achieve more robust identification and
mitigation of malicious events on the DER system.
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ergy resources, cyber attacks, cyber-physical data

I. INTRODUCTION

Inter-operable distributed energy resource (DER) grid-
support functions enable high penetrations of renewable en-
ergy resources that would otherwise not be feasible. These
commanded and configurable autonomous functions have been
shown to:

. Improve voltage regulation on distribution circuits [1],

. expand distribution hosting capacity [2],

. provide wide-area damping [3],

. perform frequency control [4],

. and ancillary services [5].

Adding these inter-operable control functions has effectively
added power generators to the Internet of Things (IoT), and
raised a number of concerns regarding cyber-physical attacks.
In theory, controlling an aggregation of DER devices could
have grave impact on power system reliability, stability, and
safety [6]. Fault detection models are able to flag malicious
events that impact the grid, but are unable detect cyber actors
that have gained unauthorized access to the network and
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are unable to detect cyber attacks early enough to thwart
malicious actions. Therefore, more robust defense mechanisms
are needed in the form of intelligent Intrusion Detection
Systems (IDS s) [7]. Well-designed IDS systems provide the
ability to detect malicious and abnormal events as quickly as
possible, and to highlight relevant information to enable grid
operators to respond appropriately to these events.
IDSs are responsible for detecting threats by monitoring

one or more data streams. Intrusion prevention systems (IPSs)
expand this capability by taking immediate action to contain
the detected threat. The implementation of IDSs/IPSs for
cyber-physical DER operations pose numerous challenges,
since traditional IDSs focus only on cyber (i.e., network
traffic) data, which includes communications between routers,
switches, and endpoints [8]. These systems commonly use
either signature-based or behavioral metrics to detect malicious
network activities. Signature-based approaches monitor data
and flag activity when known malware signatures are observed.
In many cases, if a signature match is found, the IPS applies
a predetermined rule—e.g., blocking traffic, quarantining data,
etc. Some signature-based systems include the snort IDS [9],
the Zeek (formerly Bro) IDS [10], and the Suricata IDS [11].
Behavioral approaches focus on recognizing or classifying
anomalous patterns in network data compared to a base-
line [12]. Behavioral-based [13] approaches can be trained on
pre-existing data automatically or manually by an operator,
and are often implemented using statistical machine learning
algorithms.

While these IDS/IPS systems work reasonably well in IT
environments, monitoring cyber data alone may not be enough
to detect certain OT threats. There are major advantages
to using a hybrid approach that incorporates both network
and power system information. One advantage of the hybrid
approach is that it is more challenging for an adversary to
manipulate or spoof both cyber and physical data streams to
execute an attack without detection.
To more effectively detect and respond to cyber-physical

attacks in DER systems, we propose a hybrid IDS approach
that integrates physical data with cyber network data, allowing
us to not only capture the intricacies of power system models,
but can also correlate physical measurements to specific events
on the communications and control network.

II. BACKGROUND

Current DER IDS research has explored a wide range of
behavioral techniques for anomaly detection, with increasing
interest in the detection of malicious attacks. For example,
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in [14], a combination of supervised, unsupervised, and en-
semble algorithms are tested against several photovoltaic (PV)
system attacks, as summarized below.
• Disconnect attack: An adversary gains control to a large

number of PV inverters and issues a mass disconnect
command; during heavy load conditions, this can cause
line overloads, frequency/voltage violations, and system
instabilities.

• Power curtailment attack: An adversary tampers the
control algorithm parameters to reduce the allowable
power output of the PV inverter. Detection of this type
of attack can be difficult, as the system appears to be
operating normally with partially reduced performance.

• Volt-VAr attack: An adversary manipulates inverter con-
trol to arbitrarily inject a different level of reactive power,
affecting the voltage magnitude and phase angles in the
grid.

• Reverse power flow attack: An adversary gains control
of smart grid appliances and shuts them off or triggers
circuit breakers to initiate a reduced demand response.
This results in an increased reverse power flow under
stressed conditions, which can cause line overloads and
disrupt line voltage regulators that could lead to voltage
collapse.

Although the algorithms perform reasonably well under a
defined scenario, there is limited availability of real-world data
for training the algorithms for deployment in an operational
system. Some researchers have proposed the use of faster-
than-real-time simulations of the power system to determine
the impact of particular power system commands prior to
executing the command [15]. However, the data collected from
these simulations excludes network and host-based data that
are commonly used to identify cyber attacks.
The predictability and regularity of communications and

endpoint operations within energy delivery systems make IDSs
especially effective. For example, Denial of Service (DoS)
attacks using malformed packets, unauthorized reading of data,
and unauthorized writing of data can be detected using the
Snort IDS [16]. Additionally, system calls, the duration of
software executing on an end device, the number bytes sent
and received, and the processor/memory utilization are all
useful features that can be extracted from end devices to detect
anomalous behavior [17]. IDS mechanisms can perform well
in these environments, operating strictly off of cyber data
alone. However, spoofing physical data that signature-based
and behavioral-based IDSs depend on can defeat such cyber-
based detection mechanisms

In DER systems, it is not sufficient to only detect cy-
ber anomalies; it is critical to connect the detected cyber
events with the effects in the physical power system. This
is especially important for developing mitigation techniques
and understanding the overall impact to the cyber-physical
system. Furthermore, distinguishing malicious events from
other sources of anomalies is particularly difficult.
Anomaly detection on the grid has largely focused on fault

detection and location identification, which typically involves
comparison between actual and predicted performance using
power system models and physical sensor data [18]. While this

approach is reasonably successful at producing warnings for
imminent faults, it provides limited awareness of the underly-
ing causes behind anomalies, which can result from systemic
failures stemming from hardware or software, human error,
or malicious intent. Consequently, little actionable insight is
gained in terms of identifying the appropriate responses to
ensure continued system availability.

III. METHODOLOGY

In this section, we will provide an overview of the hybrid
IDS approach, impact of data availability, and representative,
example attack scenarios.

A. Hybrid IDS Approach Overview

The hybrid IDS method performs anomaly detection anal-
yses on both cyber and physical data to determine whether
an attack had been conducted. Fig. 1 provides a general
representation of this monitoring and analysis approach. The
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Fig. 1: The hybrid IDS methodology where parameters of
interest are extracted from cyber and physical data streams

to conduct the IDS analysis.

hybrid IDS captures data from DER communications and
physical measurement equipment (e.g. advanced metering
infrastructure, voltage/current sensors, phasor measurement
units, DER devices), and extracts measurable features from the
raw data (e.g. packet length, polling frequency, power factor,
etc.). If malicious traffic is being sent from the DER device in
a manner that is difficult to detect using network data, it can
be detected via anomalies in the power data; if unexpected
behavior occurs in the DER power system, the network data
can be analyzed to determine whether the problem is caused by
malicious commands on the network. However, a hybrid sys-
tem must address additional complexities related to availability
of data. Obtaining both network and physical data requires a
higher throughput for the IDS system, and the physical data
collected is often sparse, leading to challenges in real-time
operation and response. Therefore, successful IDS operations
are not only dependent on the accuracy and precision of
the anomaly detection model, but also on meaningful data
collection and feature extraction.

B. Cyber-Physical Data Features

In developing an IDS approach to detect intrusions or unde-
sired behavior, one of the most important decisions to make
is around what features to examine in the raw data.

There are significant differences in what a feature is and
what it can tell you based on its source and the type of
information contained. Here, we separate IDS features into



several categories, such as physical system features, network
traffic features, and host based features. These can be further
segregated as well, such as network traffic on a control network
versus network traffic for a web-based management interface
or portal.

While examining behavior for a hybrid IDS for DER and
distribution control systems, the first set of features of interest
are those around the physical performance and behavior of
the system, which are collected from the power models and
physical sensors operating in the system. These can include
information such as:

. Physical System Features

* Current (AC/DC)
* Voltage (AC/DC) (sags, dips, spikes)
* Active, Apparent, & Reactive Power
* Frequency

As these variables are used in the various control schemes
and algorithms applied to manage grid-support functions,
being able to measure and determine whether the system is
behaving as expected is critical for any hybrid IDS solution
for DERs. Since the data is often temporally sparse, the IDS
may incorporate ground truth data or power system models to
provide expected values for the feature variables.

While physical features are sufficient for detecting faults,
they are often insufficient for detecting nefarious activity. As
control systems operate over a communications network, the
network traffic may be analyzed to reveal behaviors outside the
scope of the physical data. In the case of a malicious attack,
altered data values and commands may produce a system
response to impact grid performance without anomalies in
the power system model. Moreover, the attacker may either
spoof or block physical data from being passed to prevent
normal fault detection mechanisms from being triggered. To
effectively detect and respond against this type of threat,
additional features that can be measured earlier in the attack
cycle are required. This can include control network features,
such as the following:

. Network Traffic Features (control signals)

* Frequency
* Setpoint values
* Destination & Source IP Address
* Destination and Source Port
* Sequence number
* TTL
* Checksum
* TCP flags
* Destination and Source MAC Address
* IP version
* Packet Length
* Throughput
* Latency

Grid-connected IoT devices often include a web portal for
management and monitoring, and smart inverters and their
management platforms may include such capabilities as well.
These communications are usually segregated from the con-
trol network functionality. These portals create an additional
attack surface that must be protected in the system. To detect

malicious attacks in these devices, specific features should be
parsed from the network data:
. Network Traffic Features (web management interface,

optional)
* User-agent strings
* HTTP headers
* TCP headers
* Session ID
* Suspicious characters or data types
* Authentication logs

Not every indicator of system compromise can be discov-
ered by examining network traffic alone. Advanced persistent
threats on the system may operate in stealth, producing little
or no network activity until triggered by an attacker. It is
useful to examine differences in the endpoints of the system
that are hosting the required control system functionality, in
this case the smart inverters themselves. This can be done
by measuring changes to elements of the inverter operating
system or firmware, including files, network configuration,
processing, and memory.

Additional memory usage or changes in timing patterns
for processing may be indicative of additional processing
being performed, potentially hidden from the user. Thus, the
following features can be considered:
. Host-based features:

* File integrity
* Memory usage
* Processor usage
* Security logs

To achieve optimal detection of activities that may degrade
DER security or performance, a variety of data sources must
be used to collect relevant features. By applying a combination
of signature-based and behavioral techniques to these features,
the hybrid IDS can detect a wide range of scenarios covering
the overall system attack surface. When training the behavioral
models in the IDS, it is important to consider the priorities for
detection and the quality of data that is available. Sensitivity
analysis should be performed to identify the features that
are best suited for detecting each type of anomaly. An IDS
that incorporates response capabilities will need to prioritize
features that indicate the earlier stages of an attack, such as
network packets used for reconnaissance, and an IDS that
seeks to prevent denial-of-service type attacks may want to
prioritize relevant features such as throughput and memory
usage. Moreover, these considerations need to be made with
reliability in mind, as even the most precise model will fail
to detect an event if the source data is not available over an
extended period of time. For example, even if the detection
model performs better on network data than on host data from
a device, the host data may still have high importance if the
network data is frequently unavailable.
The next section will delve into how cyber-physical attacks

may manifest in various cases and the indicators that may arise
in DER systems.

C. Attack Scenarios

To develop and demonstrate this hybrid IDS approach, it
is crucial to study the interplay between the features we can



observe in the communication network and the related power
system effects. The various indicators of compromise or types
of cyber-physical attacks in DER systems also needs to be
connected to the observable information that can be used for
intrusion detection.
The previous subsection discussed the various types of

information that may be useful for detection and behaviors of
interest, in this section we will connect these two aspects of
the problem of intrusion detection using several hypothetical
scenarios that mimic known cases of OT focused cyber attacks
and display diversity in the types of information required for
detection.
1) Scenario 1: False Data Injection (Control Settings):

Data injection is a cyber attack type where incorrect data or
commands are injected into an application. In control system
networks this is a large concern as many common control
protocols, such as Modbus and IEEE 1815 (DNP3), were not
originally designed to incorporate security features that could
prevent such an attack. Since then, Modbus has a version
that adds TCP Security [19] and DNP3 secure authentication
was added to the standard in 2012 [20] to reduce the threat—
through these are rarely used in practice. In this scenario, this
malicious data is either issued through a replay attack, man-in-
the-middle attack, or some other technique to change the DER
setpoints or falsify data sent back upstream to an aggregator,
grid operator, or DER vendor. A variant of this scenario is
false data injection of measurement data used for monitoring
the distribution system, as seen in [21].
2) Scenario 2: Insider Threat: Insider threats are very

difficult to detect because the threat is a valid, authorized user.
Therefore, cyber features such as source IP, port number, and
packet frequency indicators are not useful. Physical features
may be more capable of detecting insider threat if the attacks
impact the power system by changing the DER operations
or performance. That is, utilizing knowledge of the physical
system to block or thwart unallowable control settings can be
used even if it appears said commands are coming from a valid
source.

IV. ATTACK SCENARIO AND DISCUSSION

A. Experiment Setup

To better understand the implementation of hybrid IDS
systems in a cyber-physical environment, an experiment was
conducted on a distribution system simulation that contained
three interoperable PV inverters. The feeder represented a
distribution system located in Albuquerque with 440% PV
penetration and was simulated using an Opal-RT 5600. The
three utility-scale PV systems located on this feeder were 258
kW, 1 MW, and 10 MW and modeled using the EPRI PV
Simulator. The PV simulator has the ability to be interfaced
to a real-time power system simulation and includes DNP3
communication interfaces that allow power measurements (AC
power, reactive power, AC voltage, frequency, etc.) to be
captured and the power factor (PF) to be configured on
the devices. An Advanced Distribution Management System
(ADMS) software developer, Connected Energy, issued power
factor settings to the devices based on a volt-var (VV) profile
represented by the points: V = 92, 99, 101, 108% of nominal

voltage and Q = 25, 0, 0, -25% of reactive power capacity
of the DER device. The experimental setup is shown in Fig.
2. When configured correctly (like in this case), the VV
function used the reactive power capabilities of DER devices
to drive the power system toward nominal voltage. A 40-
minute simulation of the power system was run for this VV
curve. Then the ADMS company acted as an insider threat and
reversed the sign on the reactive power (Q = -25, 0, 0, 25) to
drive the power system away from nominal voltage. In the
reversed case, the DER injected or absorbed reactive power
to force the grid voltage away from nominal. It is noteworthy
that the impact to the power system from a man-in-the-middle
attack would have been the same.

B. Results

The power factor values for the 10 MW PV system for the
normal and attacked scenarios are shown in Fig. 3. As shown
in the figure, the DER device absorbs reactive power (negative
PF) when the VV curve was programmed correctly. This kept
the voltage at the Point of Common Coupling (PCC) of the
PV system close to nominal. In the attacked case, the DER
injected reactive power (positive PF) and the voltage increased
significantly on Bus 12.

During the experiments, the DNP3 traffic to the DER
devices was captured and the power system current and
voltage were measured at the buses. In this scenario, the
insider could potentially spoof the communications data so the
power system data was used to create a simple classification
mechanism. The voltage and reactive power injection of the
PCC bus are plotted in Fig. 4. A simple alarm mechanism
was devised by bounding the normal volt-var curve. As shown
for the "goor and "bar DER operations, the physical data
measurements could easily determine when operations were
abnormal and an alarm could be raised.

However, in the case where there was no voltage or current
measurements at the PV PCC, PV voltage reads and PF
writes from the ADMS could have been extracted from the
DNP3 data. Since the EPRI inverter is configured per the
DNP Application Note AN2013-001 information model, this
data is relatively easily captured from the network traffic.
Hybrid scenarios also exist. If only PF was issued and voltage
was not measured from the DER, the voltage measurements
from the power system would be necessary to conduct the
alarm classification. It is more common that VV curves are
programmed into DER devices, so if the equipment was
programmed with the inverted "bar VV curve, PF commands
would not have been issued or captured. In that case, voltage
and reactive power/power factors would need to have been
collected from the DER or the power meter.

C. Comparison of Approaches and the Importance of Data
Availability

As shown in Table I, depending on what data is available
from the power system or from the DER network traffic, either
the physical, cyber, or cyber-physical features are required
to detect the malicious actions. For instance, in Case 2 only
the cyber data is necessary to detect misprogramming of the
DER device. Similarly for Cases 3-5 with the physical data.
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Fig. 3: Power factor values with normal and malicious commands and the associated voltage on Bus 9.

However, in Case 6, cyber and physical data are necessary
to detect the cyber attack. It is worth noting that, collecting
duplicative data (e.g., voltage measurements from the power
system and also from the DER devices) is useful because
this corroborates the integrity of the DER communications
and power measurements. If there are discrepancies in mul-
tiplicative measurements, this would be a clear indication
of a cyberattack or sensor faults. Collecting cyber-physical
measurements provides higher confidence by marrying data
streams. To fool an hybrid IDS would require extra steps to
spoof or disable various data streams and collection mech-
anisms, which increases the difficulty of compromising the
DER devices while remaining undetected. It is also worth
mentioning, there comes a point where there is not enough
data to conduct these assessments with cyber-physical data,
such as in Case 7, in which there is no data about the DER
PF or reactive power to determine if the device is behaving as
intended.

V. CONCLUSIONS

As DER systems increase in penetration on the power
system, the risk to the power system from malicious control
of DER devices also increases. This necessitates new sophis-
ticated defense mechanisms that incorporate cyber-physical
data sets. A hybrid IDS approach is described in this paper
that is suitable for DER systems which monitors and alerts
using cyber and physical features. The need for this joint
analysis is exemplified by an insider threat scenario; the results
demonstrated the effectiveness of the hybrid approach and its
broader applicability with limited data. It is recommended that
the hybrid IDS approach is further developed using machine
learning and IDS algorithms and its deployment and testing
an a high-fidelity emulation environment.
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