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Background

Array map

« Source Physics Experiment.
« Nevada National Security Site

e Single chemical explosion

o 5035 kg TNT equivalent
o 76.5 m below surface

e Large N array
o 974 vertical component
geophones
o Goal: high resolution
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Background

Shear and surface waves difficult to resolve due to scattering 37.231
. Observation:
. : 37.225+
. Scattering appears azimuthally dependent
. Hypothesis:
o . _ _ 37.22 1
e  Scattering is controlled by anisotropic geologic structure |
*  anisotropic texture L -
397215}
e faults =
=
*  Analysis: 37 21
. Form ten linear arrays, each with a unique source-receiver
azimuth 37.205 |
. estimate coherency of P and “post-P” |
Formsix areal arrays 37.2+ ‘
’ estimate wave vector i T1 1 60;3 - ~i 1 6”.»05 Tﬁéﬁf
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P-wave (red) has high coherency for all linear arrays

Raw Data

INear arrays

Shear waves, surface waves, converted
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surface waves:

intermittent on other linear arrays

pronounced on LA-1

Array map
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Analysis methods: coherency and array analysis

1) Coherency as a proxy for wave scattering

e Scattering as a function of source-receiver azimuth and inter-station distance
 Two methods for cross-validation: magnitude squared coherence and peak normalized cross correlation

2) Array processing: determine the origin of scattered waves

1) Slowness vector of scattered waves for different regions of the Large-N

1) Magnitude-squared coherence
 frequency domain
 coherency for each frequency

cross power spectral
density for seismograms
xandy

R0k
M3 1) = B PP, (D)

2) Peak normalized cross correlation
e time domain
* coherency averaged over passband
of data

cross correlation for
seismogramsx and y
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P wave

Magnitude squared coherence
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Magnitude squared coherence: scattered waves
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P-wave

Peak normalized cross correlation

20-40Hz 40-80Hz

10-20Hz

5-10Hz
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scattered waves

Peak normalized cross correlation

10-20Hz 20-40Hz 40-80Hz

5-10Hz
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37.23
summary
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Array analys

*Specifics

e Scattered wave window

e Passband 2-5Hz

37.22

* Red line denotes direction of maximum
slowness.

apnine]

e AA-1 and AA-2 show that most of the

eResults

scattered energy radiates from the

Boundary Fault.
e Other arrays do not show this

37.21

* Interpretation

e The Boundary Fault is a source of scattered

wave energy
e This energy quickly attenuates

e Away from fault: scattered energy appears

to originate from the source

37.20



Discussion and Future Work

* Documentation of azimuthally dependent seismic scattering
* P wave results have high coherency, indicating minimal scattering for P wave arrivals
LA-1 contains the highest coherency values for both P and scattered wave arrivals
General decrease in coherency as propagation azimuth goes from fault-parallel to fault-normal.
Boundary and Yucca faults potentially act as a frequency-specific waveguide

Substantial amount of low frequency scattered wave energy radiating normal to the strike of the boundary
fault

* Implications
e Radiation pattern of P and scattered waves are source-related AND propagation dependent
e Caution in using seismic amplitudes for yield estimation, as azimuthal bias may exist

» Sources of anisotropic scattering are likely from fault (in this case), however may be due to anisotropic
textural fabric
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