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Dynamic TEM shows that foils still ) e,
propagate at 150 nm total thickness

6 Bilayers (25.2 nm thick) 11 Bilayers (15 nm thick)
150 nm thick foil

7500 nm thick foil \/s W&E




Experimentally Measured Velocities
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The relationship between physical @&z,
parameters and propagation velocity

From Mann, Gavens, Reiss, Van Heerden, Bao, and Weihs, J. Appl. Phys. 1997:

Fick’'s Second Law Heat Equation
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Solved for the case of a
moving wave
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Values for model parameters are @i
informed by experimental data
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Series of eigenvalues, «a,,, and Fourier

coefficients, k,,, account for the chemical
potential lost to imperfect interfaces as a
function of initial concentration, C,(y), for
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hermal Conductivity in a three- @i
arameter fit of velocity data

Heat of reaction from calorimetry

oty

RTy allow for the calculation of adiabatic

and flame temperatures
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Values for model parameters are @
informed by experimental data
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Heat of reaction from calorimetry
and enthalpy-temperature diagrams
allow for the calculation of adiabatic
and flame temperatures
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Pair of best fit for activation 7 i

Laboratories

energy and diffusion coefficient
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Heat of reaction from calorimetry
and enthalpy-temperature diagrams
allow for the calculation of adiabatic
and flame temperatures
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Accounting for Heat Loss in Model

Flame temperature is determined

based on the enthalpy/t 20(T* — Tj)
py/temperature Q,4q4(T) = —¢
diagram from the heat of reaction brotai Thickness
minus heat lost to radiation by:
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Radiation loss in 750 nm thick foll L
reduces peak velocity
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Mass transport rate is dependent on e
whether both reactants melt
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Reactant phase determines kinetic @&
path to product formation

6 Bilayers (25.2 nm thick) 11 Bilayers (15 nm thick)




Model Fits to Measured Velocities
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Summary ) =,
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