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Promise in Molten Sodium Batteries

Sodium-based batteries 

• 6th most abundant element on earth.

• 5X the annual production of aluminum.

• Proven technology base with NGK

Sodium —Sulfur (NaS) Technology.

• Favorable battery voltages (>2V)

• Utilizes zero-crossover solid state

separators.

Traditional Na-Batteries operate at -300°C

• Improves separator ionic conductivity

• Maintains molten phase chemistry

• Increases Cost

• Complicates Material Packaging

• Limits Battery Lifetime

• Introduces Freeze-thaw Hazards/Costs

lon Conducting
Ceramic
Separator

"Molten
Catholyte"
• Sulfur
• M-Halide Salts

Na-NiCULell - 2.6V) 

2Na + NiCl2 F4 2Na+ + 2C1- + Ni(s)

Na-S (E„ll - 2V) 

2Na + 4S F4 Na2S4



3 Virtues of a Low Temperature Battery

Low Temperature Operation of a Molten Na Battery is
Tremendously Enabling

> Improved Lifetime
• Reduced material degradation
• Decreased reagent volatility
• Fewer side reactions

> Lower material cost and processing
• Seals
• Separators
• Cell body
• Polymer components?

Low Temperature
lon Conducting
Ceramic

Low T°C
Molten Salt
Catholyte

300°C

100°C

> Reduced operating costs
I

> Simplified heat management costs
• Operation
• Freeze-Thaw

1

1



4 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

Molten Sodium

2Na+ ---- ----- ----

Ana dad
It

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii= 3.24V
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5 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

2e-

I Molten Sodium

2Na+ ------ ----- ---- ----- ----
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13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii = 3.24V



6 NaSICON Ceramic Separators

Key Separator Properties:

• Selective, high ionic conductivity at reduced temperature (<150°C)

• Chemical compatibility (molten Na, molten halide salts, strong base)

• Mechanical robustness

• Low cost, scalable production

Key Qualities of NaSICON Ceramic Ion
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• High Na-ion conductivity (>10-3 S/cm at ,2._.
25°C)

• Chemical Compatibility with Molten Na and
Halide salts

• Zero-crossover
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7 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

2.5

Molten Sodium

2Na+

111111fte Pr"OM

Molten Halide Salt :;4.

OCP = 3.32V

0 10 20
Time / Hr
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Battery cycling
at 110°C!

25 mol% Nal-AIBr3
with NaSICON

separator.

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii = 3.24V
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8 Lowes. Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.
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9 Separator Treatment Affects Cell Performance

First, roughening the NaSICON surface with a surface polish allowed higher
operating current density and lower overpotentials.
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• Not polished NaSICON battery operated at ± 0.299 mA current C/12 1% DOD
• Polished NaSICON battery operated at ±0.897mA C/4 1% DOD



Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

4.3

Heated to "420°C"
for 30 minutes

Na-treated NaSICON shows lower overpotentials on battery cycling.
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• Polished NaSICON battery operated at ±0.897 mA C/4 1% DOD
• Na Baked NaSICON battery operated at ±0.894 mA C/4 1% DOD
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11 Conventional Synthesis

Solid State Ceramic Synthesis ("Shake ̀n Bake")

2ZrSiO4 + Na3PO4 4 Na3Zr2PSI2012

• Milled powders pressed and fired at 1200°C in air
• Pellet densities >95%
• X-ray diffraction confirms NaSICON synthesis with

Zr02 and ZrSiO4 secondary phases
• Conductivities reasonable, but slightly less than

commercial NaSICON
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12 Key Processing Variables

Humidity
• Desired >95% theoretical density (3.2 g/cm3)
• During monsoon season (high humidity) pellet density dropped from 98% to

—70-80%
• Drying or calcining powder at 600°C immediately before pellet pressing

returned density to >95% density.



13 Key Processing Variables

Humidity
• Desired >95% theoretical density (3.2 g/cm3)
• During monsoon season (high humidity) pellet density dropped from 98% to

—70-80%
• Drying or calcining powder at 600°C immediately before pellet pressing

returned density to >95% density.

Secondary Phase Formation
• Secondary phases, such as Zr02 and ZrSiO4, can degrade conductivity.
• "No" and "PO4' volatility during sintering can lead to secondary phase

formation.
• 5% Excess Na3PO4 showed diminished secondary phases
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Solution-Assisted Ceramic Densification
14 (Cold Sintering)

NZP-1
• NaZr2P3012 (From Sol-gel prep)

• lOwt% aqueous alkaline solvent

• 530MPa (75ksi)

• 25°C/min ramp rate

• Hold 150°C for 20 min

• Geometric Density - 2.82g/cc

• Relative Density -89% (Theoretical assumed 3.2g/cc)

str.,n-sa
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NZP Powder

500-
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NZP-2
• NaZr2P3012 (1100C pg 6 NBI')

• 8wt% aqueous alkaline solvent

• 530MPa

• 10°C/min ramp rate

• Hold 150°C for 30 min

• Geometric Density - 2.85g/cc

• Relative Density -90% (Theoretical assumed 3.2g/cc)

20 30 40
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15 Na+ Conductivity of CSP NZP + NZSP

Na+ Conductivity for (Grains + Grain Boundaries) / S cm-1

Sample

11

200 °C 150 °C 100 °C 50 °C 35 °C Ea (eV)

NZP1 1.17E-05 2.19E-06 2.26E-07 1.10E-08 6.87E-09 0.62

NZP2 1.26E-05 2.38E-06 2.39E-07 1.76E-08 1.13E-08 0.58

0 Arrhenius fits for NZP
-2 o-T = o-oexp(-Ea/kT)
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b -10 NZP1
>2.5 h equilibration time before each measurement 

-E-- 
:.

4:.1 MHz — 10 mHz, 100 mV AC, 0 V DC using Solartron 1260+1296 _1 -12 
N7P2 

NZP lost 0.2-0.3% mass after measurement.

For reference:

-14

-16 —
0.0015 0.002 0.0025 0.003 0.0035

Inverse Temperature / K-1

NZP: 10-5-10-4 S/cm @200 °C, activation energy 0.51-0.61 eV
(900°C sinter + excess Na20 from Aono, JACerS, (1996), 79, 2786-2788)

NZSP: -4 mS/cm at 25 °C (Ceramatec)

Though not yet optimal, these results indicate promise toward the application of
this process for NaSICON-base separator production.



1 6 Composite Separator Innovation

Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity. Poor connectivity of
Na-conductive NaSICON is evident in cross-sectional
elemental mapping.
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Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity. Poor connectivity of
Na-conductive NaSICON is evident in cross-sectional
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Die body

An alternative approach 

• NaSICON chips (1mm thick)
enveloped in PVDF powder and
warm-pressed

• NaSICON chips provide
continuous conductive path
through separator

plunger

Conductivity is
determined by
NaSICON ceramic.

6RT -0.5 mS/cm for composite!



18 Hazards of Poor Material Selection

Polymer incorporation highlights the
importance of careful material section.

Compatibility must be considered for:
• Molten sodium
• Molten halide catholyte salts
• Non-ambient temperatures
• Electrochemical reactions
• Temperature
• Mechanical Properties (toughness,

compliance, hermeticity, etc.)

Magnesium metal and Teflon (PTFE) are
elements of decoy flares...Sodium has a
similar reactivity.

Molten sodium and fluoropolymers should
not be considered stable, especially for
long-term use.

Thermal and mechanical stability

Chemical compatibility



19 Take Away Messages

• Low temperature sodium batteries, enabled by next generation solid state separators, may
help address a huge need for increased grid-scale energy storage.

• Solid State NaSICON can be successfully synthesized with high density and reasonable
conductivity
• Humidity and secondary phase formation can affect NaSICON ceramic properties

(can be managed through synthetic modifications?)

• Composite separators comprising NaSICON powder and polymer are tough and durable,
but have insufficient NaSICON connectivity and thus very low conductivity.

• Composites comprising NaSICON "chips" with "through-connectivity" showed functional
conductivity in a tougher, compliant separator.

• Chemical compatibility of composite components is IMPORTANT!

• Future work will focus on improving NaSICON ceramic conductivity and incorporation into
hybrid or composite separator structures, including the use of alternative processing
methods, such as solution-assisted ceramic densification.
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23 Challenges with Existing Na-Batteries

Na-NiC121Lell - 2.6V) 

2Na + NiCl2 F4 2Na+ + 2CI- + Ni(s)

• High temperature operation (typically > 270°C)
• Cycle lifetime (solid cathode phase)
• Cost (related to cycle lifetime and material costs)

Particle
Coarsening

po.

117

Na-S (E„ll - 2V) 

2Na + 4S F4 Na2S4

• Safety: Violent, toxic reactions between molte
Na and molten S - cascading runaway!

• Corrosive, toxic chemistries
• High temperature operation (270-350°C)

1
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I
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24 A Need for Grid-Scale Energy Storage Research

Renewable/Remote Energy Grid Reliability National Defense

Electricity Storage Capacity in the United States,

by Type of Storage Technology

25.2 GW U.S. storage capacity

Pumped hydro

94%

Other 6%

1,574 lkMN other storage

Thermal storage

669 MW

Battery

733 MW

Emergency Aid

Compressed air

114 fv1W

Flywheel

58 MW

Source: DOE Global Energy Storage Database http://www.energystorageexchange.org/ March, 2018



25 Battery-based Energy Storage: Room to Grow!

Electricity Storage Capacity in the United States,

by Type of Storage Technology

25.2 GW U.S. storage capacity

Pumped hydro

94%
Other 6%

1,574 MW other storage

Thermal storage

669 MW

Battery

733 MW

Compressed air

114 M W

% of in service U.S. Generation Capacity

0.07% Battery Energy Storage

2.2% Battery Energy Storage and Pumped Hydro Storage

Flywheel

38 MW

Source: DOE Global Energy Storage Database http://www.energystorageexchange.org/ March, 2018



26 Conventional Synthesis Can be a Headache!
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