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Motivations

• Develop a methodology to improve our understanding of flow and
transport processes in fractured and porous rock that directly
impact our ability to predict:

• Aquifer response to injected fluids

• Hydrocarbon production decline

• Efficiency of subsurface carbon storage

• Induced seismicity
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■ Experimental Design
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Single Fracture Network

• Single fracture network created in a lab

• Originally designed for testing proppants'
behavior under stress conditions

• Pure sands (#20-30; 0.6-0.85mm) were placed
and permeability changes were measured

• A series of microCT scanning was obtained at
different conditions
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Design for Single Fracture Network

• MicroCT image of a single fracture system
(200 to 1000 microns aperture)

• 3D segmented result was analyzed by lattice Boltzmann
simulations

• Average permeability was calculated as —80-90 Darcy in
the presence of proppants

• For 3D printing work, fracture network without
proppants was considered

slow fast

3D view of fracture network with proppants (left) and velocity

profiles from lattice Boltzmann simulation (right)
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STL image of the fracture without

proppants

Yoon et al. (I n prep)



3D printing

• Initially single piece of fracture network was printed with clear resins

• Various 3D printers with stereolithography (SLA) [Form La bs, 3D Systems, Stratasys]

• Printed fracture network was scanned using microCT (12 microns resolution)
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Advances in Printing Design 1

• Multiple printing designs of single fracture system

• Flexible printing options with luer lock ports for inlet and outlet

• Comparison of microCT images of printed fracture with original microCT images

STL image for 3D
printing

Half piece of fracture

Eni
Assembled printed

fracture with the luer lock



Advances in Printing Design 2

• Improvement in details of connection, fitting, and assembly

• Sealing gasket was also printed (at least water tight)
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(a) Assembled fracture network. Note that the steel screw was replaced with nylon for microCT imaging.

(b) STL format of the bottom part of the fracture with a gasket of lmm thickness.

(c) Aperture distribution calculated from the segmented microCT image.

(d) Normalized histogram of aperture distribution over a stack of microCT images (540 images).



■ Experimental Results



Water Flow in the Printed Fracture

MicroCT stage (printed) and

water flow image
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MicroCT image
Sandia National Laboratories



Water Flow in the Printed Fracture

Water-air interface
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Automated 3D Contact Angle Computation

• Contact angle is not a single value in 3D
• Manual calculation is very tedious and cherry-picking
• Automated 3D contact angle algorithm (Klise et al., 2016) is applied
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3D Contact Angle Distribution
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■ Numerical Simulations



Conformal Decomposition Finite Element

Method (CDFEM)

• Sierra/Aria: Sandia National Labs Galerkin FEM platform for solving nonlinear, implicit,
and transient coupled-physics problems, with a focus on transport equations

• Conformal Decomposition Finite Element Method (CDFEM)
- Level set field(s) define materials or phases
- Decompose non-conformal elements into conformal ones
- Obtain solutions on conformal elements in traditional manner
- Utilized transientlyto support topological evolution

• Properties
- Supports wide variety of interfacial conditions (identical to boundaryfitted mesh)
- Avoids manual generation of boundaryfitted mesh
- Supports general topological evolution (subjectto mesh resolution)

• Similar to finite element adaptivity
- Uses standard finite element assembly including data structures, interpolation, quadrature
- Extensive verification efforts have proven appropriate mass/energy conservation



CDFEM for Multiphase Flow

• CDFEM used to provide dynamic discretization for multiphase flow

with interfaces that do not conform to static finite element meshes

• Level set that advects with the flow is used to define the interface

locations

• Adds degrees of freedom (velocity and pressure) by adding nodes

to mesh which lie on the exact interface location

• Can apply boundary conditions directly at interface

- Surface tension

- Wetting line models

Weakly
discontinuous
velocity

Strongly
discontinuous
velocity

Conformal mapping with two
phases separated with an interface



Computational Model
• Galerkin triangular/tetrahedral finite elements to discretize

Stokes equation using Sandia Sierra multi-physics suite

• Level Set Equation
• Advection equation
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Flow and Dispersion in Fracture

• Cut this block grid of the fracture surfaces (stereolithography)

• CDFEM for local grid refinement on the level sets of fracture surfaces

• Separate unstructured grid blocks for the fracture and the surrounding solid
("rock"), separated by interfaces with the same level of fidelity that was in the
original STL file
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Closure by Thermal Expansion in Fracture
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Multiphase Flow Simulations

Contact angle variations (flow from left to right)
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Reactive Transport Simulations
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Summary

• 3D printing of porous and fractured structures augmented with digital rock

physics has high potential to advance our understanding of poromechanics

• CDFEM for multiphase flows

— Sharp interface method

— CDFEM design encapsulates interface motion/discretization and finite element

assembly/physics

• Developed a methodology for additive manufacturing of synthetic media that

mimics natural media and enables creation of custom/functional porous material


