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Abstract— Energy storage systems are flexible and control-
lable resources that can provide a number of services for
the electric power grid. Many technologies are available, and
corresponding models vary greatly in level of detail and
tractability. In this work, we propose an adaptive optimal
control and estimation approach for real-time dispatch of
energy storage systems that neither requires accurate state-of-
energy measurements nor knowledge of an accurate state-of-
energy model. Specifically, we formulate an online optimization
problem that simultaneously solves moving horizon estimation
and model predictive control problems, which results in es-
timates of the state-of-energy, estimates of the charging and
discharging efficiencies, and future dispatch signals. We present
a numerical example in which the plant is a nonlinear, time-
varying Lithium-ion battery model and show that our approach
effectively estimates the state-of-energy and dispatches the
system without accurate knowledge of the dynamics and in
the presence of significant measurement noise.

I. INTRODUCTION

Energy storage systems are flexible and controllable re-
sources that play a key role in development of the future
electric power grid. Energy storage systems can provide a
number of power and energy applications that improve the re-
liability and resilience of power grids, from frequency regula-
tion and voltage support, to backup power and enabling the
integration of intermittent renewable generation [1]. How-
ever, there are several challenges that need to be addressed
before energy storage can be widely adopted. One of these
challenges is that accurate technology-specific energy storage
system models are complicated and may be intractable to
solve or are simply not known. Therefore, models that are
used suffer from potentially large inaccuracy and uncertainty.
For instance, the state-of-energy (SoE) dynamics of a battery
energy storage system (BESS) are generally time-varying
and nonlinear and depend on operating conditions, age, and
cell balancing. Therefore, estimating the SoE of a multi-cell
battery pack is challenging, and state estimates from a battery
management system (BMS) can have significant error [2]. In
the past, some methods have mitigated this by restricting the
SoE to a small operating range so that linear SOE dynamics
can be used or by using heuristic control approaches. For
example, a rule-based heuristic that updates a control strategy
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as a function of SoE is presented in [3]. Unfortunately,
these methods are not optimal and may severely limit the
capabilities of the system.

Online estimation and control have the advantage of
updating state estimates and control actions whenever new
feedback measurements are available and may be used to al-
leviate some of the challenges associated with estimation and
control of a BESS. Example optimization-based approaches
to estimation and control are moving horizon estimation
(MHE) [4] and model predictive control (MPC) [5], [6],
respectively. Both of these approaches involve the solution
of a finite horizon online optimization problem at each time
step and can explicitly handle system constraints. Given a
finite sequence of past measurements and past control inputs,
solving an MHE problem results in a current state estimate.
Given an estimate of the system’s current state, solving an
MPC problem results in a finite sequence of future control
actions and state predictions. However, both MHE and MPC
rely on a model of the system, which can be inaccurate and
uncertain for a BESS.

In this work, we propose an adaptive approach that com-
bines MPC and MHE problems for the real-time dispatch
of energy storage systems. This approach involves solving
both MHE and MPC problems simultaneously as a single
min-max optimization problem and includes uncertain model
parameters as decision variables to be estimated and up-
dated online. This output-feedback approach to MPC for
constrained nonlinear systems was proposed in [7] and [8].
Several applications and examples of using this approach
for adaptation and learning are given in [9]. In this work,
we specialize the approach for energy storage dispatch.

Our proposed approach does not rely on accurate SoE
measurements from the BMS. Instead, it computes its own
state estimate based on an adaptively updated model within
the energy management system (EMS). Even if the true
system dynamics are not known, a simplified model of
the dynamics with adaptively updated parameters may be
effectively used. In fact, in a numerical example, we show
that using a simple linear energy flow model with adaptively
updated values for the charging and discharging efficiencies
within this combined MPC/MHE approach results in effec-
tive estimation and control of a simulated nonlinear, time-
varying Lithium-ion BESS.

Several adaptive approaches to MPC have been proposed,
and optimal control approaches considering the modeling
challenges of a BESS have been used in several power and
energy applications. Adaptive MPC for constrained nonlinear
systems is presented in [10]. MPC for nonlinear systems with



uncertain parameters with known probability distributions
is discussed in [11]. A dual adaptive MPC approach is
presented in [12] that considers uncertain linear systems
and updates estimates of the unknown parameters at each
sampling time. The original stochastic problem is reformu-
lated as a quadratically-constrained quadratic-programming
problem and is readily solved. Adaptive MPC using MHE for
parameter estimation for constrained linear systems is pre-
sented in [13]. In [14], an adaptive switched MPC approach
is proposed for dispatching energy from a system including a
photovoltaic array, diesel generator, and BESS that similarly
estimates the charging and discharging efficiencies of an
energy flow model online, but a constant efficiency (time-
invariant) linear model is used as the plant. An approximation
of a first-principles electrochemical model for a Lithium-ion
BESS is developed and employed in a quadratic dynamic
matrix controller, which takes into account constraints on
current, state-of-charge, and temperature, to minimize battery
charging time in [15]. Furthermore, optimization approaches
are common in techno-economic analyses of energy storage
systems. An MPC approach for maximizing revenue of
a BESS and wind energy conversion system participating
in energy markets with additional constraints on depth-of-
discharge and daily number of cycles to expand the lifetime
of the BESS is presented in [16]. A dynamic program-
ming approach is used to solve the offline optimization of
maximizing potential revenue from a BESS with nonlinear,
technology-specific models in [17].

The rest of the paper is organized as follows. The problem
formulation and modeling of energy storage systems are
discussed in Section II. Our proposed adaptive approach for
real-time dispatch is presented in Section III. A numerical
example is given in Section IV, and conclusions and future
work are discussed in Section V.

II. PROBLEM FORMULATION

We consider the problem of optimally dispatching a grid-
connected BESS in real-time. The dispatch signals are usu-
ally computed by an EMS that communicates with the BESS.
The architecture of a BESS connected to an EMS and the
grid is shown in Figure 1. The components of a BESS are
the battery (BAT), the power conversion system (PCS), which
interfaces the BESS with the grid, the PCS controller, which
performs the primary control function of tracking a power
reference, and the BMS, which monitors the system and
individual cells by taking measurements, such as voltage,
current, and temperature, and calculates estimates of the
BESS states. The solid black lines between the grid, PCS,
and BAT in Figure 1 indicate the path along which power
flows. It is within those connections where losses that depend
on the BESS state and current operating conditions occur.

The EMS performs higher-level computations and deter-
mines dispatch signals for the BESS that depend on the
application for which the BESS is being used. The inputs to
the EMS are the outputs of the BMS (often estimates of the
BESS SoE, voltage, current, temperature, and other quanti-
ties) and data from the grid (such as energy prices or system
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states, like frequency) that are necessary to determine the
best dispatch signal for a particular application. Computing
effective real-time dispatch signals can be a challenge due to
significant noise in the measurement signals and potentially
inaccurate and uncertain models within the EMS. Therefore,
we would like to design EMS control algorithms that are
robust to these types of errors and uncertainties.

A. Modeling Energy Storage Systems

Models for energy storage systems vary in their level of
detail and are often technology-specific. In this section, we
briefly discuss energy flow models of energy storage systems
that may be used in a BMS or EMS.

1) Nonlinear Energy Flow Model: A general discrete-
time nonlinear energy flow model can be used to describe
the SoE dynamics of a BESS and is given as

To1 = Ty + [ (e, u§)T — fH (@, uf)T, (1

where z; € R>¢ is the SoE (in units of energy) at time t €
Zso, up = [u§ uf]T € RZ is the vector of dispatch signals
(charge and discharge power commands ug € R>g and ul €
R, respectively) at time ¢, 7 € Rso denotes the duration
of each discrete time step, and f{ : R?> — R and f{ :
R? — R are generally nonlinear time-varying functions that
depend on the energy storage technology considered. As a
representative example, we next present the functions f; and
f¢ for a Lithium-ion battery system that depend on battery
cell parameters, the charge and discharge power commands,
and the SoE of the BESS. This Lithium-ion BESS model is
described in, e.g., [17], and is derived from the Tremblay-
Dessaint model [18].
Lithium-ion Battery:

I (@, uf) = MpesUy — picv (2a)
1
Fil(@e,uf) = —uf +pi, (2b)
Tlpes

where 7, € (0,1) denotes the efficiency of the PCS, and
pl¢ € Rsg and pl? € R are the power losses of the



BESS during charge and discharge, respectively, and can be
approximated as

- Q Cz . CzZ(T — ) .
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w Q@ Cz u$ ’ Cz(Z — ) [ ud
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where T € Ry is the energy capacity of the BESS (in units
of energy), () € R~ is the rated capacity of a battery cell
in Ah, V' € Ry is the rated DC voltage of a battery cell
in Volts, R € Ry is the internal resistance of a battery cell
in Ohms, and C' € R+ is a model coefficient that can be
calculated from the nameplate or testing data of a battery
cell.

2) Linear Energy Flow Model: Similarly, a linear energy
flow model may be used for the SoE dynamics of a BESS
and is given as the following discrete linear time-invariant
model

R )
where 7. € (0,1) denotes the BESS charging efficiency and
na € (0,1) denotes the BESS discharging efficiency. Many
existing EMS control algorithms utilize a linear energy flow
model even though it does not accurately describe the SoE
dynamics, especially as operating conditions change with
time. To account for model uncertainty or noise, we can
write the output of the linear energy flow model (4) as

Yt = Tt + Ny, &)
where n; € R is noise on measurement y; € R at time .

III. ENERGY STORAGE DISPATCH

In this section, we present methods that can be imple-
mented in an EMS for real-time dispatch of energy storage
systems.

A. Nonlinear Model Predictive Control Approach

We first present a nonlinear MPC approach for real-time
dispatch of an energy storage system. Given an estimate
of the current SoE, this approach involves solving a finite-
horizon online optimization problem at every time ¢, which
results in a sequence of dispatch signals to be applied and
associated SoE predictions. First we define some notation:
The set T :={¢t,t+1,...,t+T — 1} is the set of discrete
times in the finite forward time horizon considered. 7' is
length of the time horizon. Given a discrete-time signal
z 1 Lo — R™ and two times 1, to with t; < %2, we
denote by z, .1, the sequence {2t,, Zt; 41, - - - 2ty I

With this notation, we can write the optimization problem
that we would like to solve as

t+T-1

> S ) 6)
k=t

_min
Ut:t+T—1

subject to the following constraints for all k € T

& = o (7a)
[g]|oo < @ (7b)
of < & + fi(@r, 05)T — fE(@r, 48)T < (1—-B)Z (7o)

The objective function JYC : R x R? — R encodes the
application in which the energy storage system is partici-
pating and depends on the dispatch signals 1, and the SoE
predictions Zj. Constraint (7a) ensures that the initial state
is equal to the given estimate xy. Constraint (7b) ensures
that the charged and discharged power from the BESS is
less than or equal to the power rating u. Constraint (7c)
ensures that the predicted SoE Zj; (computed using model
(1) with 4y) is greater than or equal to, and less than or
equal to, a desired fraction of the energy capacity . The
scalars «, 8 € [0, 1] are the desired fractions of unused SoE
at the lower and upper limits of the BESS energy capacity,
respectively. These parameters are often chosen to limit the
depth of charge and discharge to, e.g., improve the cycle life
of the BESS, to limit the SoE to values for which linear SOE
dynamics are valid, or to ensure availability of energy from
the BESS for other applications.

We denote the sequence that minimizes (6) at time ¢ as
Uf;, 7, and the associated SoE predictions as &7, ., p.
Then, at each time ¢, we solve (6) and use as the control
input the first element of the sequence 4y}.,, r_;, leading to
the following control law:

up = Uy (8)

The performance of this approach depends greatly on the
accuracy of the SoE estimate Z; and the accuracy of the
prediction model used in constraint (7c). In practice, an
accurate nonlinear model of the BESS may not be known, or
even if an accurate nonlinear model is known, the resulting
nonlinear optimization problem may be intractable. Further-
more, it is not uncommon for the SoE measurement from
the BMS to have significant error. Therefore, to compute the
best dispatch signals, the EMS may require a better estimate
of the SoE than the output of the BMS and would need a
model that facilitates solving the optimization problem while
remaining fairly accurate as the operating conditions of the
system change over time. This motivates the need for an
optimal control approach that is robust to measurement noise
and parameter uncertainty. We present such an approach in
the next subsection.

B. Adaptive Model Predictive Control Approach

In this section, we propose an adaptive estimation and con-
trol approach that can accommodate measurement noise and
parameter uncertainty. In particular, we propose a combined
MPC with MHE approach that, at each time step, involves
the solution of a min-max optimization problem and results
in state estimates, model parameter estimates, and future
dispatch signals. In this approach, a predictive model, such
as the linear energy flow model (4)-(5) can be used, and



the charging efficiency 7. and discharging efficiency 7, are
uncertain parameters to be estimated and adaptively updated.

Since this problem involves state estimation and control
computation, the objective function now contains two terms:
one term involving the past data from time ¢ — L to time £,
and the other involving the future control actions and state
predictions from time ¢ to time ¢ + 7. Therefore, the two
terms can be given as

JMNZp—r, Ut Lit—15 Ye—Let, Do, ﬁd)

and

J U & 1447, et 47—1, Ny M) -

Let us define further notation: The finite backward time
horizon is comprised of the discrete times in the set £ =
{t—L,t—L+1,...,t—1} and has length L. The sequence
of past measurements is denoted y := y;_r.;. The sequence
of known past dispatch signals is denoted u = w;_r.4—1.
The future control inputs to be chosen are denoted as 1 =
Ug.4+7—1. The estimate of the initial state is denoted as X :=
24— 1. Finally, the associated state predictions are denoted as
X = Zeq1:047-

With this notation, we can write the objective function at
each time step as

J()’\(7 5'(7 u7 ﬁ7 y7 ﬁC’ ﬁd) =
Ju(iv ﬁa ﬁca ﬁd) - Jn(fcv u,y, ﬁm ﬁd)a
and the optimization problem that we would like to solve as

mjn max J(iv iv u, ﬁa Yy, ﬁca ﬁd)a (9)
u  7Ne,Nd,X

subject to constraint (7b) and the following constraints:

1
0 < &g + HlilT — —ST < T Vk e £ (10a)

Nd
1

aF < &g + HlsT — Fﬁ‘,ﬁr <(1-pB)z VkeT (10b)
d

T = Yr — Ng Vke LUt (10c)
et < e < pi (10d)
ng™ < g < mg™ (10e)

Again, the objective function encodes the energy storage
application, but it now depends on the past sequences of
dispatch signals u and SoE measurements y, the unknown
initial state X, the sequence of future dispatch signals to
be chosen 1, and the unknown charge efficiency 7). and
discharge efficiency 7).

Constraints (10a) and (10b) replace the constraint (7c),
where the nonlinear SoE dynamics are replaced with the lin-
ear energy flow dynamics, and there are separate constraints
for the forward and backward horizons. Constraint (10a) is
used when estimating the SoE and allows the estimate to be
between zero and the energy capacity Z. Constraint (10b) is
used for determining the future dispatch signals and requires
that the predicted SoE values be within the same desired
interval as in constraint (7¢). Constraint (10c) ensures that the
output dynamics (5) are satisfied. Constraints (10d) and (10e)

bound the values that 7). and 74 can take, respectively, and
these bounds n™", yM@ pMin and T can be chosen using
knowledge of the BESS technology and other characteristics.

This approach is robust to measurement noise and mod-
eling error due to the maximization with respect to the
uncertain efficiencies 7). and 7y and the unknown initial
state #;_r,.. Therefore, the solutions 7}, 7}, and &;_; that
maximize (9) can be thought of as worst-case estimates
of these variables. With a slight abuse of notation, we
also denote the sequence of future dispatch signals that
minimizes (9) as 4y, p_; and the resulting SoE predictions
as oy, ., 7. We solve this optimization problem at every
time ¢ in a receding horizon fashion, leading to the same
control law (8).

IV. NUMERICAL EXAMPLE

In this section, we consider the problem of dispatching
an energy storage system to perform arbitrage in an energy
market. In particular, we consider a Lithium-ion battery with
parameters given in Table I. We consider the Lithium-ion
BESS model (1)-(2) to be the plant of the system, and we
use the linear energy flow model (4) as the prediction model
within the adaptive MPC/MHE algorithm.

The objective is to minimize the cost of purchasing energy
in the energy market while effectively estimating the SoE
and the time-varying charge and discharge efficiencies at
each time ¢. This is equivalent to maximizing the revenue
received from buying and selling energy in the energy market
by charging and discharging the energy storage system. Then
the optimization problem we would like to solve is

t+T—1 t

min max_ ( Z (@ — adyr — Z wﬁk> (11)
G k=t—L

subject to the constraints in (7b) and (10). The parameter Ay

is the real-time locational marginal price (RTLMP) at time

step k, and w is a non-negative scalar weight used to penalize

unlikely values for the noise.

Next we present results from using the adaptive
MPC/MHE approach and solving (11) over a week. We
compare these results to results from assuming constant
charge and discharge efficiencies in the linear energy flow
model (4) used for prediction, i.e., solving (11) with a fixed
1. and ng. The optimization parameters that were used are
given in Table II. The real-time energy prices are the 5-
minute RTLMPs from the East Cambridge node in ISO New
England for January 18-24, 2018, which are available online
[19]. For a fair comparison, the same measurement noise
sequence was applied in each case and was generated as
a sequence of normally distributed random variables with
zero mean and a standard deviation of 10 kWh (2% of
the energy capacity ). Finally, these optimization problems
were formulated and solved using TensCalc [20], a MATLAB
toolbox for nonlinear optimization using symbolic tensor
calculus, with the primal-dual algorithm described in [7].

Table III presents the results for multiple cases. The first
column describes the case considered: adaptive MPC/MHE,



TABLE I
LITHIUM-ION BATTERY CELL AND BESS PARAMETERS

Parameter ~ Description Value  Units

R internal cell resistance 0.02 Ohm
C calculated cell parameter  0.005 -

14 rated cell DC voltage 3.6 Volt
Q rated cell capacity 2.5 Ah
T BESS energy capacity 500 kWh
u BESS power rating 250 kW
Tpes PCS efficiency 0.95 -

TABLE II
OPTIMIZATION PARAMETERS
Parameter  Description Value  Units

T Time-step 1/12 hours

At Real-time LMP at time ¢ - $/kWh

T Forward time horizon 144 -

L Backward time horizon 36 -

w Weight on measurement noise 10 -
ymin Minimum value of 7. 085 -
ek Maximum value of 7. 0.98 -
n;‘i" Minimum value of 74 0.85 -
g Maximum value of 74 0.98 -

« Fraction of unused SoE 0.05 -

B Fraction of unused SoE 0.05 -

or MPC/MHE with constant charge and discharge efficien-
cies. The chosen constant efficiencies (90%, 91%, 92%, and
93%) correspond to roundtrip efficiencies (i.e., 1.14) of 81%
to 86.5%. Column two presents the generated revenue from
each case (calculated as — Y, \¢(uf — uf)7, where ¢ goes
from time 00:00 on January 18 to time 23:55 on January
24, in increments of 7 = 5 minutes). Column three gives the
root-mean-square error (RMSE) of the SoE estimate over the
entire week, and column four gives values for a metric that
quantifies how much constraint (10b) is violated in each case
over the week. We define this constraint violation metric as

(12)

E— (1= 8)71l2 + [|Z — 1|2,

where % is the vector of all z; such that z; > (1 — 3)Z, Z
is the vector of all x; such that z; < aZ, and 1 is a vector
of appropriate length whose elements all equal one.

While the revenues generated in each case are similar, the
adaptive MPC/MHE approach results in significantly lower
state estimation error and smaller constraint violation metric
€. More accurate SoE estimation and minimal constraint
violation are ideal in general but may be especially important
when considering applications in which bidding of power
or energy quantities is required, such as when participating
in frequency regulation, or in resilience applications when
a particular quantity of energy is required. In addition,
other values for the constant efficiencies were considered,
with n. = ng below 0.90 or above 0.93, but resulted in
dispatch signals w; that violate the constraint (10a), i.e.,
the solution was physically infeasible. This is not surprising
as choosing a constant efficiency too high or too low will
result in overly optimistic or pessimistic, respectively, SoE
predictions. Moreover, it is not surprising that the revenue for
the constant efficiency cases may be slightly higher because
a larger range of SoE values were (unintentionally) used (i.e,

TABLE III
RESULTS FOR MULTIPLE CASES FOR THE WEEK OF JAN. 18-24, 2018.

Case Revenue RMSE of &  Constraint violation €
Adaptive $439.30 3.63 36.87

ne =ng = 0.90  $437.78 13.44 168.14
ne =nq =091  $441.73 11.36 150.92
ne =nqg =0.92  $443.49 6.52 101.34
ne =nqg = 0.93  $442.85 5.96 130.50

larger constraint violation €).

Figure 2 shows the results for the entire week. It can be
seen that when the RTLMP is high, the BESS discharges
(sells energy in the energy market), and when the RTLMP is
low, the BESS charges (buys energy in the energy market).
Figure 3 shows the results for a portion of the week. It can
be seen that the SoE estimate from the adaptive MPC/MHE
approach closely tracks the true SoE even in the presence of
significant measurement noise.

V. CONCLUSION AND FUTURE WORK

We presented an adaptive optimal control approach for
dispatching energy storage systems that involved simultane-
ously solving a moving horizon estimation problem and a
model predictive control problem. This approach estimates
the state-of-energy of the energy storage system, estimates
and adaptively updates the charge and discharge efficiences,
and computes resulting optimal charge and discharge dis-
patch signals. An accurate technology-specific model of the
energy storage system is not required; in fact, only a linear
energy flow model and knowledge of the system’s power
rating and energy capacity were required. The numerical
example considered a nonlinear Lithium-ion battery system
and showed that our approach, using a linear energy flow
model for prediction whose efficiencies were estimated and
updated online, resulted in significantly lower state-of-energy
estimation error and higher constraint satisfaction when
compared to the same approach assuming constant charge
and discharge efficiencies.

In future work, we will implement this approach within
an energy management system to dispatch a real energy
storage system for which an accurate nonlinear state-of-
energy model is not known. Furthermore, we will investigate
optimization problem formulations for other real-time energy
storage applications, such as frequency regulation, and also
consider a system operation or degradation cost.
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