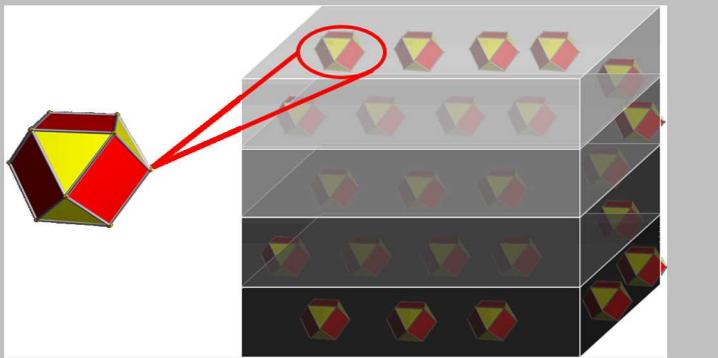
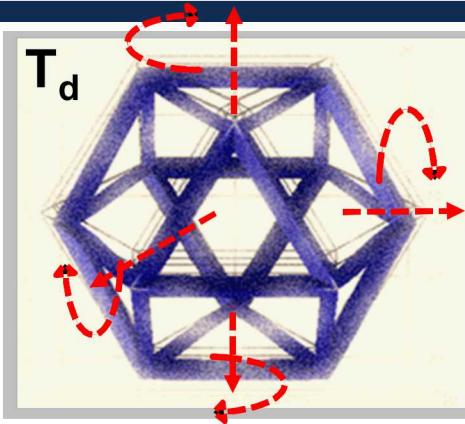


Group Theory Approach to Pentamode-Like Acoustic Metamaterials for Underwater Cloaking and Impedance Matching to Fluids

SAND2019-4414C

U.S. Department of Energy
National Nuclear Security Administration



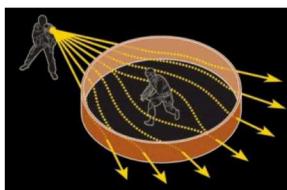
Character table for T_d point group							
	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$	linear, rotations	quadratic
A_1	1	1	1	1	1		$x^2+y^2+z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Ihab El-Kady & Charles M. Reinke

Applied Photonic Microsystems, Sandia National Laboratories, Albuquerque, NM, USA

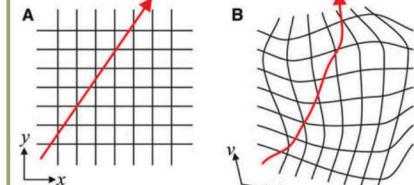
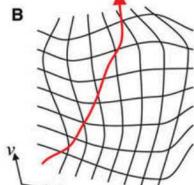
M. Ghasemi Baboly & C.Z. Leseman

Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS, USA

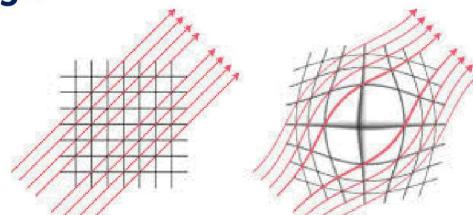


Cloaking in the EM Domain

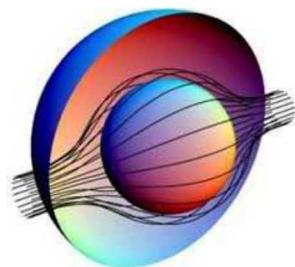
Transformation Optics^{*,1}



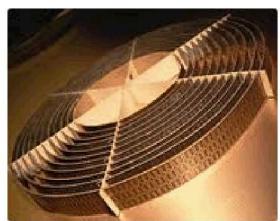
Coordinate Transformation



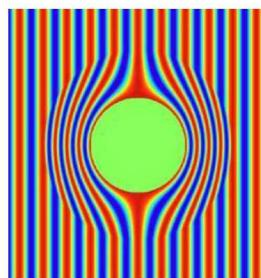
Transformation selected to open up a hole in space



3D Cloak Concept

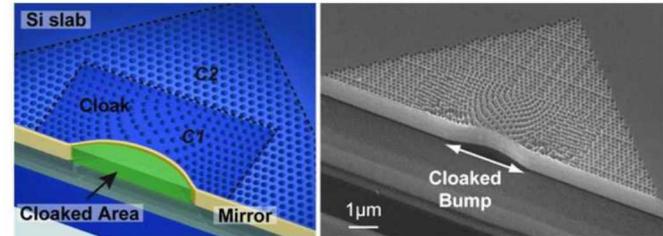


Duke's 2D RF Cloak

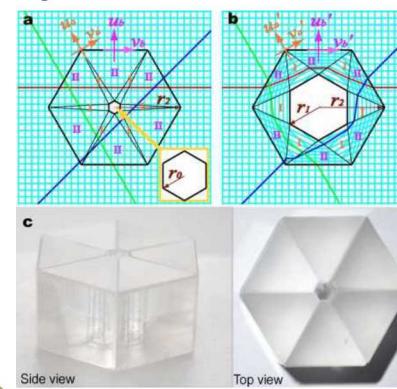


Cloak EM Signature

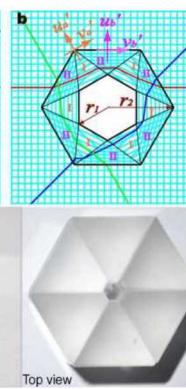
Diffractive Optics²



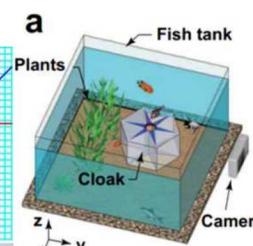
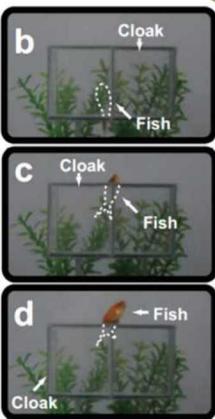
Optical Illusion³



Side view



Top view



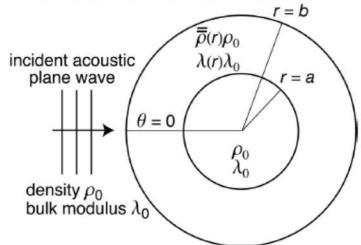
Disadvantages:

- Cloak's size
- Cloaked area $\sim \lambda^2$
- Blind inside out & outside in!

Cloaking in the Acoustic Domain

Acoustic Cloaking

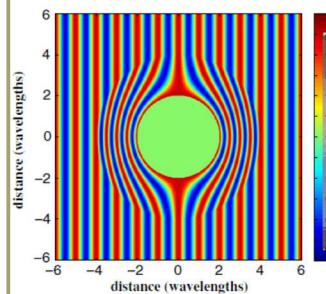
Transformation Acoustics^{*4}



3D Acoustic Cloaking Shell

$$\frac{r^2}{\rho_r} = \frac{(r-a)^2}{k_1}, \quad \rho_\phi = \rho_\theta = \frac{b-a}{b},$$
$$\rho_\phi = k_1, \quad \rho_r = \frac{b-a}{b} \frac{r^2}{(r-a)^2},$$
$$\frac{\rho_\phi}{\lambda} k_0^2 r^2 = k_{sh}^2 (r-a)^2, \quad \lambda = \frac{(b-a)^3}{b^3} \frac{r^2}{(r-a)^2}.$$

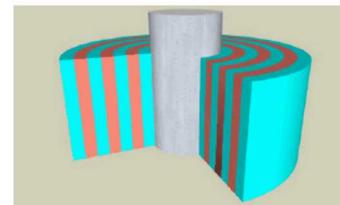
Coordinate Transformation



Pressure Field

MIT 2D Ultrasonic Cloak

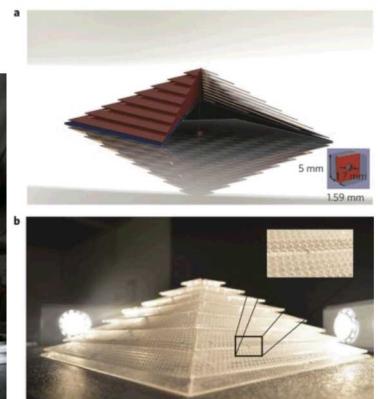
Fluidic Acoustic Cloak⁵



Layers with varying fluid density

3D rendering using fluid filled pipes!

Ground Acoustic Cloak⁶



Disadvantages:

- Cloak's size
- Cloaked area $\sim \lambda^2$
- Blind inside out & outside in!

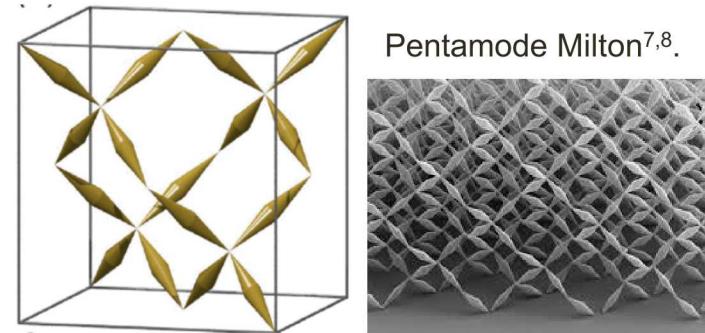
Pentamode Approach to Cloaking

Why is Acoustic Underwater cloaking difficult?

- Fluids are Shearless
- Solids support both shear and bulk waves
- The impedance mismatch will always create reflections!

Pentamode: The Sufficient but **NOT** Necessary Condition:

- 3D solid that behaves like a fluid.
- Finite bulk but vanishing shear modulus
- Hard to compress yet easy to deform
- Elasticity tensor with only one non-zero eigenvalue and five (penta) vanishing eigenvalues.



Pentamode Milton^{7,8}

The Necessary **AND** Sufficient Condition:

- Modal energy distribution is based on ratio of Bulk (K) to Shear (G) moduli
- Need to minimize G/K ⁸ or ideally have $G/K \rightarrow 0$

An Elastic Tensor by Design:

- **#1 Sigmund Numerical Search:** Space = boundary of hypercube $\sim 10^9$ possibilities⁹.
- **#2 Milton logical deduction:** 1D \rightarrow 2D \rightarrow 3D; limited number of starting points \rightarrow Severely restrict outcome \rightarrow Requiring a in infinitely small connection

$$\tilde{C}_{\text{Pentamode}} = \begin{bmatrix} C_{11} & 0 & 0 & \hat{0} \\ 0 & 0 & 0 & \hat{0} \\ 0 & 0 & 0 & \hat{0} \\ \hat{0} & & & \hat{0} \end{bmatrix}$$

$$\tilde{C}_{\text{Needed}} = \begin{bmatrix} K_{ij} & KG_{ij} \\ GK_{ij} & G_{ij} \end{bmatrix}$$

$$KG_{ij} \rightarrow 0$$

$$GK_{ij} \rightarrow 0$$

$$\& G_{ij}/K_{ij} \rightarrow 0$$

A Metamaterial Approach

❖ **What is a Metamaterial?**

Engineered artificial materials that exhibit properties different and likely unattainable by constituent components

❖ **Context:**

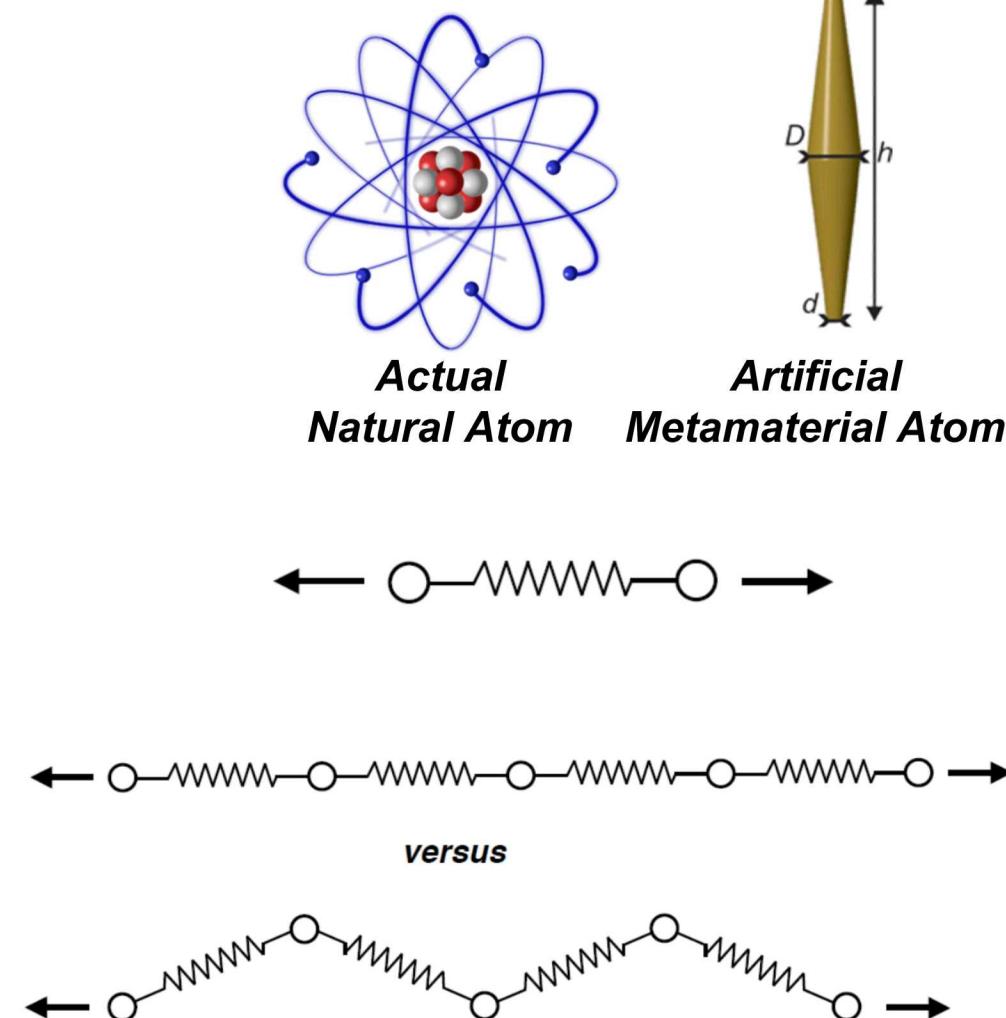
- Interested in the mechanical properties e.g. stiffness, and elastic modulus
- Think of two atoms connected by a spring (often nonlinear)

❖ **Stiffness:**

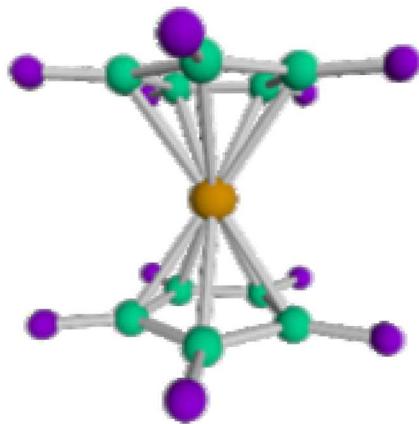
- Depends on the type of bond

❖ **Elastic Modulus:**

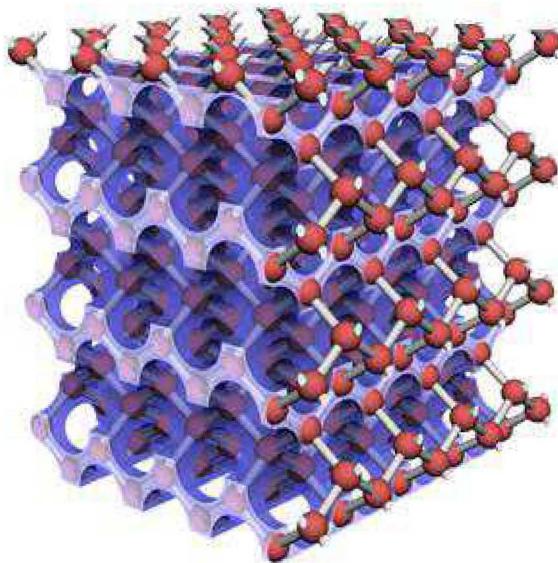
- Depends on the arrangement/packing of atoms



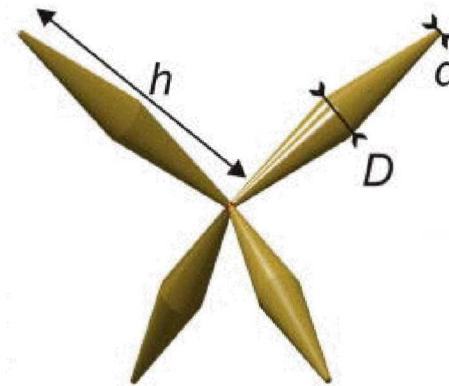
What is a Metamaterial?



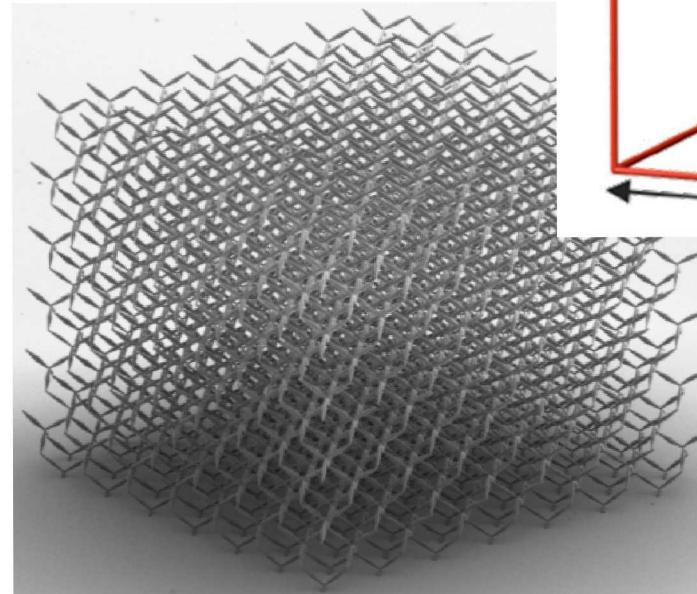
Natural Molecule



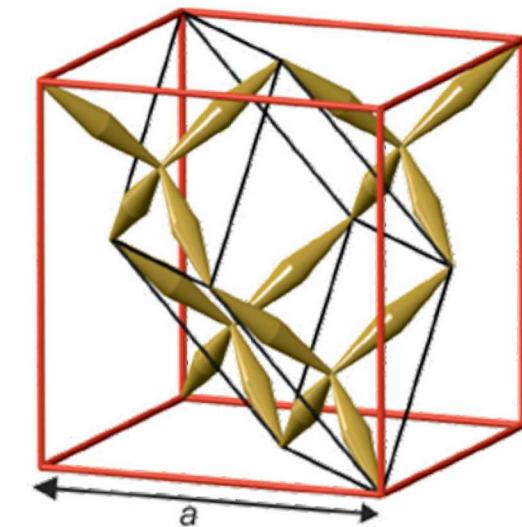
Molecular Lattice



Metamaterial Molecule



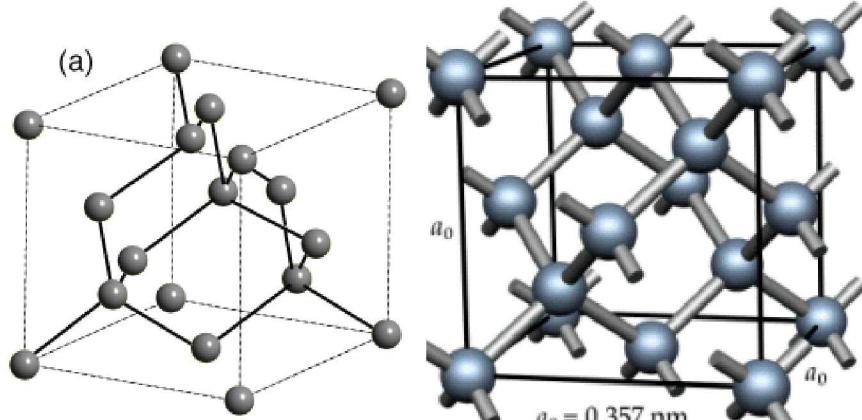
Metamaterial Lattice



Arrangement Matters!

Take Carbon atom as an example

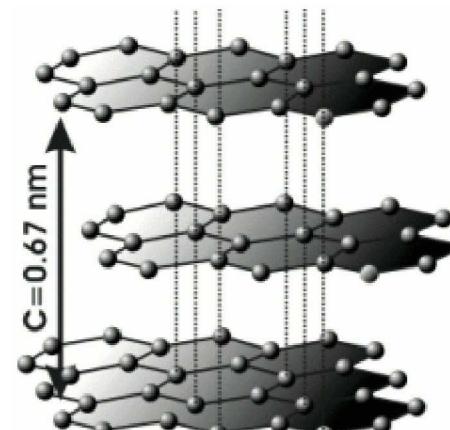
Diamond



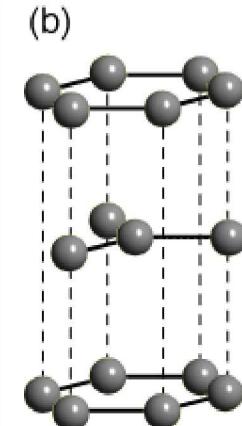
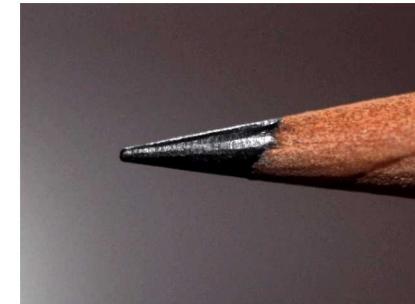
Diamond Structure

One of the hardest yet optically transparent materials known to man!

Graphite



Graphite Structure



One of the softest yet optically opaque materials known to man!

In the language of metamaterials: “Not only does the local resonance (atom) matter, but also the global resonance and the interactions of the adjacent cells!”⁷

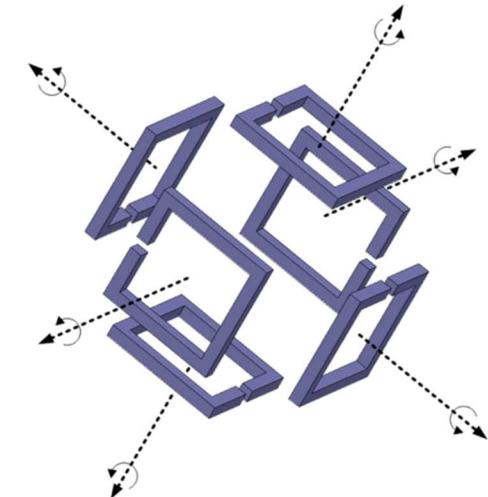
How do we arrange Metamaterial “atoms” to achieve a desired functionality?

❖ Why is this such a hard problem?

➤ Take the simplest MM element; Split Ring Resonator:

- Trial and Error?
 - For a simple SRR on the 6 faces of a cube:

- In generally: $4^6 = 4096$ ways!
 - Invoking reciprocity: $4^3 = 256$ ways!
 - Invoking the Quasi-static limit: $4^3/2 = 128$ ways!



➤ No Design rules of thumb! Physical intuition can only get you so far!

• Element-Element Interactions:

- Brute force EM simulations can only tell us the net result with very limited insight into element-element interactions.

• Extrapolation:

- Starting with a well studied MM element (e.g. SRR) can we predict the outcome of a chosen topological arrangement?

❖ Turn back to Natural atoms, and ask the same question!

Question: How are natural atoms arranged to achieve a given property?

❖ Bare in mind a few issues:

- Natural atoms assemble to give the **minimum energy configuration**, NOT necessarily our objective here!
- NOT all properties are awarded by naturally occurring materials! Entire field of MM arose in an attempt to achieve unusual functionalities!
- Manybody Problem:
 - Equations of motion are almost impossible to solve.
- We are only primarily interested in Mechanical properties
 - Basically **vibrations** and **rotations** in our artificial atoms
- Quantum Mechanics tricks → come to selection rules, “solutionless approach”:
 - Symmetry of Wavefunction
 - Symmetry of the interaction Hamiltonian/potential
 - Symmetry of the boundary value problem

Code Word → Symmetry

Molecular Spectroscopy: Determining the properties of Natural Molecules

➤ **Symmetry elements of a molecule constitute a complete group, “Point Group”**

➤ **Catalogue molecules into “58 Character” tables:**

- Despite sharing **same symmetry**, molecules may have vastly **different** motional resonances!

➤ **Generalized rotational-vibrational motion of a molecule:**

- Can be viewed as a superposition of elemental/fundamental motions called “**normal modes**”.
- Use **normal modes as basis** → Symmetry elements are **diagonal Matrices**

➤ **Good news:**

- **1-to-1 analogy** with a molecule’s spectroscopic activity
 - Active **Vibrational modes** → **Raman active**
 - Active **Rotational modes** → **IR active**

Nonaxial groups	<u>C₁</u>	<u>C_s</u>	<u>C_i</u>	-	-	-	-	-
C_n groups	<u>C₂</u>	<u>C₃</u>	<u>C₄</u>	<u>C₅</u>	<u>C₆</u>	<u>C₇</u>	<u>C₈</u>	
D_n groups	<u>D₂</u>	<u>D₃</u>	<u>D₄</u>	<u>D₅</u>	<u>D₆</u>	<u>D₇</u>	<u>D₈</u>	
C_{nv} groups	<u>C_{2v}</u>	<u>C_{3v}</u>	<u>C_{4v}</u>	<u>C_{5v}</u>	<u>C_{6v}</u>	<u>C_{7v}</u>	<u>C_{8v}</u>	
C_{nh} groups	<u>C_{2h}</u>	<u>C_{3h}</u>	<u>C_{4h}</u>	<u>C_{5h}</u>	<u>C_{6h}</u>	-	-	
D_{nh} groups	<u>D_{2h}</u>	<u>D_{3h}</u>	<u>D_{4h}</u>	<u>D_{5h}</u>	<u>D_{6h}</u>	<u>D_{7h}</u>	<u>D_{8h}</u>	
D_{nd} groups	<u>D_{2d}</u>	<u>D_{3d}</u>	<u>D_{4d}</u>	<u>D_{5d}</u>	<u>D_{6d}</u>	<u>D_{7d}</u>	<u>D_{8d}</u>	
S_n groups	<u>S₂</u>	<u>S₄</u>	<u>S₆</u>	<u>S₈</u>	<u>S₁₀</u>	<u>S₁₂</u>	-	
Cubic groups	<u>T</u>	<u>T_h</u>	<u>T_d</u>	<u>O</u>	<u>O_h</u>	<u>I</u>	<u>I_h</u>	
Linear groups	<u>C_{<>v}</u>	<u>D_{<>h}</u>	-	-	-	-	-	

Application of Group Theory to Molecular Spectroscopy:

❖ Group Theory Terminology:

- Reducible Representation Γ : Most general form of vibration (current, mechanical, ..etc).

▪ Irreducible Representations (IrredRep)

$A_1, A_2, B_1, B_2, \dots$ etc. : The normal modes. classified and named based upon their symmetry

- Characters χ : The trace of the matrix representation of a symmetry op in the normal mode basis

▪ L&Q Functions (X, Y, Z) and (R_x, R_y, R_z)

Represent the behavior of the Irred. Rep. in a Cartesian basis.

Character Table:

Most compact form of symmetry Representation

Point Group

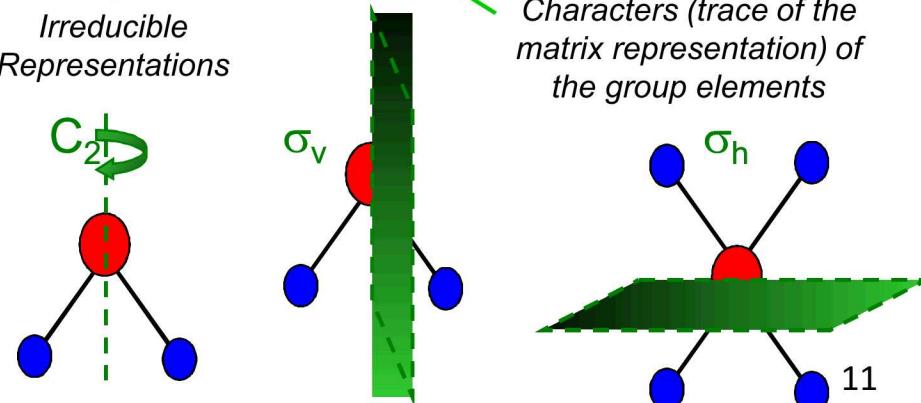
Symmetry Elements/Operations

functions that transform as the various irreps of the group.

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_v(yz)$	Linear	Quadratic
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	y, R_x	yz

Irreducible Representations

Characters (trace of the matrix representation) of the group elements



Group Theory Mapping

❖ *Mapping:*

Bulk modes \leftrightarrow Generalized vibrations about structural joints
 \Rightarrow Transform like $\vec{r} = (x, y, z)$

Shear modes \leftrightarrow Generalized rotations about structural joints
 \Rightarrow Transform like axial vector $\vec{R} = (R_x, R_y, R_z)$

❖ **Quadrant Access:**

$$\begin{aligned}
 & \text{Coupled Linear Oscillations} \quad (r_i, r_j) \quad \text{Coupled Linear/axial Motions} \quad (R_i, R_j) \\
 & \overline{\overline{C}} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ \hline C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \quad (R_i, R_j) \\
 & \text{Coupled Linear/axial Motions} \quad (R_i, R_j) \quad \text{Coupled Axial motion}
 \end{aligned}$$

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \\ C_{14} & C_{24} & C_{34} \\ C_{15} & C_{25} & C_{35} \\ C_{16} & C_{26} & C_{36} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}$$

Bulk **Shear**

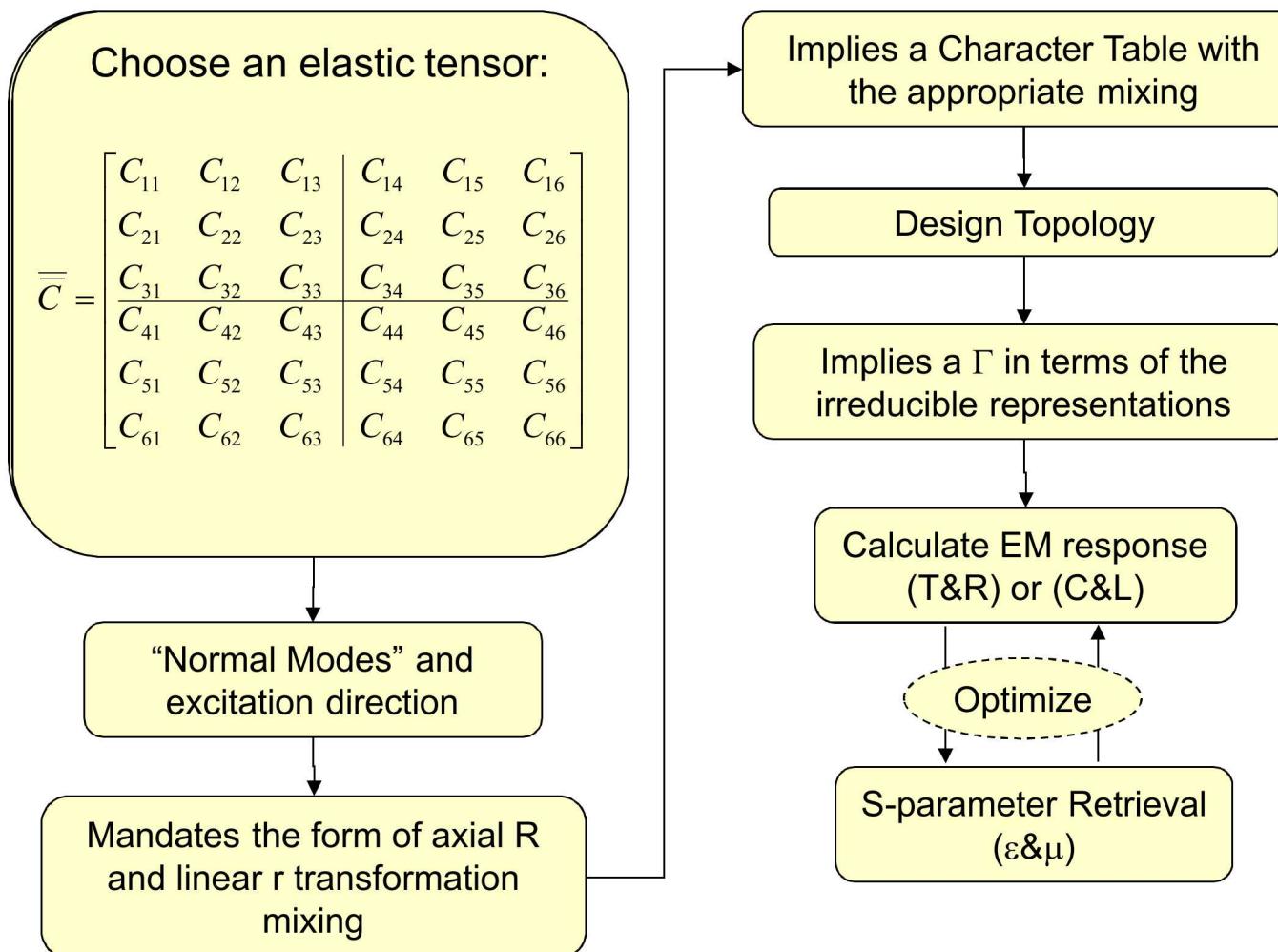
$$\overline{\overline{C}} = \begin{bmatrix} C_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & C_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$

Independent Linear Oscillations $r_i^T s$

Independent Axial motion $R_i^T s$

Group Theory Inverse Problem Approach

Engineering the MM Constitutive Tensor



Group Theory Approach Pentamode

Practically what we require is:

- Diagonal elasticity tensor
- Optimize such that all diagonal elements are small relative to C_{11}

Linear and axial mixing:

- Need a block diagonal tensor with no shear/bulk coupling
- (x, y, z) & (R_x, R_y, R_z)

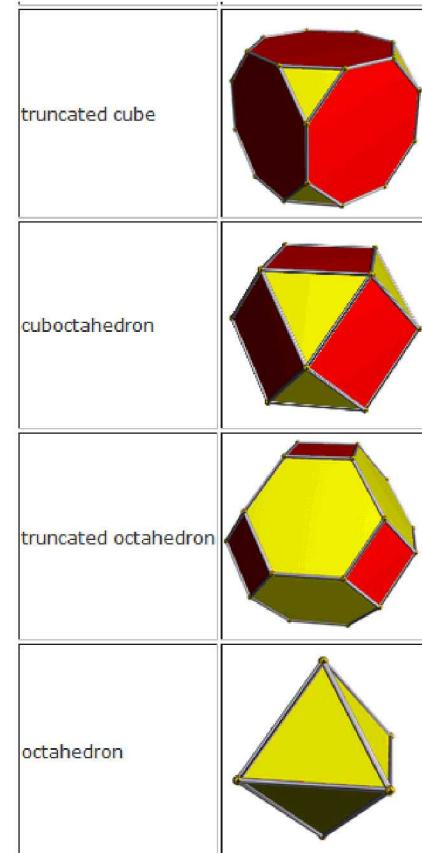
Cavite:

GpTh only tells us about the symmetry but nothing about the structural or material parameters!

Character table for T_d point group							
	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$	linear, rotations	quadratic
A₁	1	1	1	1	1		$x^2+y^2+z^2$
A₂	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Character Table for O_h point group

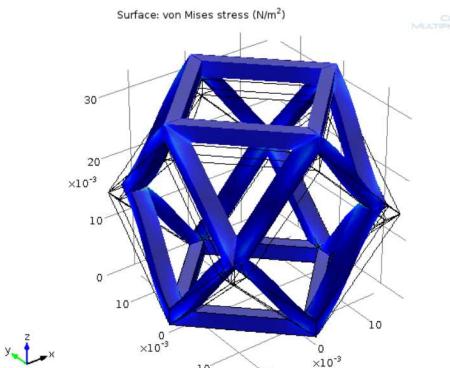
O_h	E	$8C_3$	$6C_2$	$6C_4$	$3C_2 = (C_4)^2$	i	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$	linear functions, rotations
A_{1g}	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-
A_{2g}	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1	-
E_g	+2	-1	0	0	+2	+2	0	-1	+2	0	-
T_{1g}	+3	0	-1	+1	-1	+3	+1	0	-1	-1	(R_x, R_y, R_z)
T_{2g}	+3	0	+1	-1	-1	+3	-1	0	-1	+1	-
A_{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-
A_{2u}	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1	-
E_u	+2	-1	0	0	+2	-2	0	+1	-2	0	-
T_{1u}	+3	0	-1	+1	-1	-3	-1	0	+1	+1	(x, y, z)
T_{2u}	+3	0	+1	-1	-1	-3	+1	0	+1	-1	-



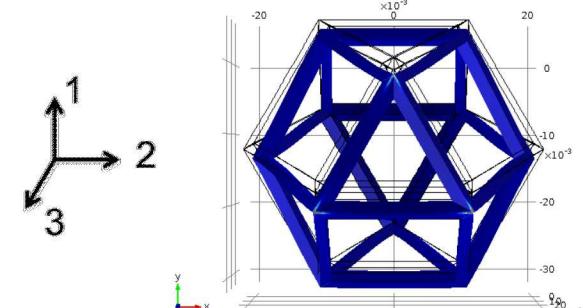
Modeling & Results

Results:

$$\tilde{C} = \begin{bmatrix} 1 & 0.0821 & 0.003 & \sim 0 & \sim 0 & \sim 0 \\ 0.01 & 0.1 & 0.007 & \sim 0 & \sim 0 & \sim 0 \\ 0.067 & 0.006 & 0.008 & \sim 0 & \sim 0 & \sim 0 \\ \sim 0 & \sim 0 & \sim 0 & 0.009 & \sim 0 & \sim 0 \\ \sim 0 & \sim 0 & \sim 0 & \sim 0 & 0.0098 & \sim 0 \\ \sim 0 & 0.002 \end{bmatrix}$$



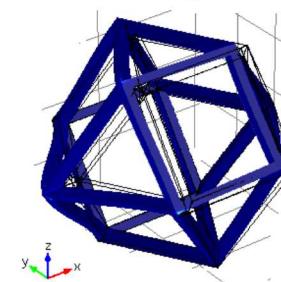
$L=2\text{cm}$; $w=16\text{mm}$; $t=20\text{mm}$



Calculating G/K :

1. Calculated the volumetric strain on each side. ($\Delta V/V$)
2. Fixed the same boundary on the opposite side and calculated the force and displacement on those boundaries.

$$K = \frac{\frac{1}{3}(f_{11} + f_{22} + f_{33})}{\frac{\Delta V}{V}}$$

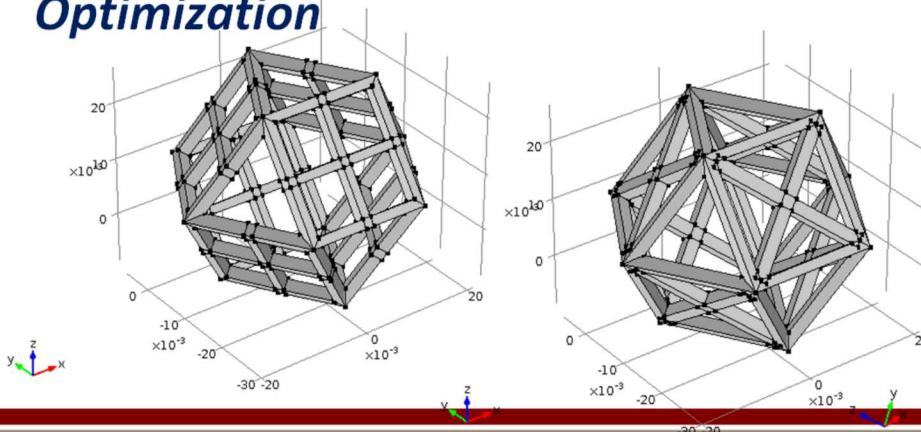
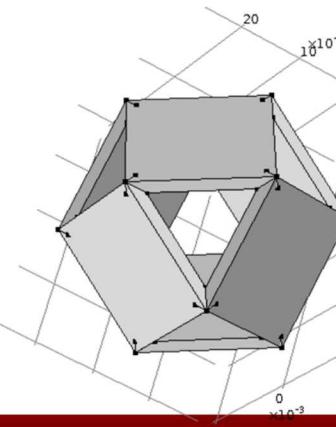
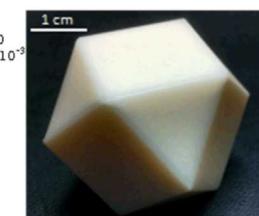


$$G/K \sim 7.14 \times 10^{-4}$$

$$\varepsilon_{13} = \frac{\text{displacement}}{L} = \frac{\Delta l}{L}; \quad G = \frac{f_{13}}{\varepsilon_{13}}$$



Optimization



Summary and Conclusions

- a. Introduced the Group theory as an inverse design methodology to engineered metamaterials¹⁰
- b. Used symmetry arguments to engineer an elastic tensor with the desired format
- c. Used modeling to optimize the bulk to shear modulus ratio
- d. Were able to achieve Pentamode-like behavior with $G/K \sim 10^{-4}$

