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I2 Combined Environments

Combined Environments (CE) is our term for what would
generally be called Multi-Physics. Its legacy is associated with
Sandia's history in systems certification for different
"environments"

We are considering combined electromagnetic and
mechanical vibration  environments (EM/vibe).

The primary focus of this Combined Environments effort
is to understand how mechanical
influences/changes affect the
electrical performance of a system.



3 I Environments

Mechanical vibrations induce relatively slow (100's-1000's Hz) dimensional changes
to electromagnetic points of entry (POE). POE: joints, apertures, holes, connectors,...

These dimensional changes influence the electromagnetic coupling through the POE;
thereby, amplitude modulating the coupled fields.

Amplitude modulated fields can result in observable effects in electric circuits and
other sensitive components.



I4 Effects on Electronic Circuits

Some analog electronic circuits tend to naturally demodulate (rectify)
amplitude modulated (AM) signals. As a result, the lower frequency
baseband components are separated from the higher frequency carrier.
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5 I Effects on Electronic Circuits

Some analog electronic circuits tend to naturally demodulate** (rectify)
amplitude modulated (AM) signals. As a result, the lower frequency
baseband components are separated from the higher frequency carrier.
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6 I Preliminary Mechanical & Electrical Simulations

Flat flanged cylinder
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I7 Static EM Shielding Effectiveness Setup

Shielding effectiveness (SE) measurements performed in an anechoic chamber
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8  Flat Flange Cylinder Static Shielding Results

• Static (w/o vibe) shielding effectiveness measurements and simulations
performed with I, 2, and 5 mil thick stainless steal shims (4x aperture slots).

• Sandia Eiger and commercial software CST were utilized.

• Very good agreement achieved with the addition of the joint contact
resistance.
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9  Vessel 2 Static Shielding Results

• Static (w/o vibe) shielding effectiveness measurements and simulations
performed with I, 2, and 5 mil thick stainless steal shims (4x aperture slots).

• Sandia Eiger and commercial software CST were utilized.

• Very good agreement achieved with the addition of the joint contact
resistance.
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10  Vessel 2 Static Shielding Results

• Static (w/o vibe) shielding effectiveness measurements and simulations
performed with I, 2, and 5 mil thick stainless steal shims (4x aperture slots).

• Sandia Eiger and commercial software CST were utilized.

• Very good agreement achieved with the addition of the joint contact
resistance.
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11 Vessel 2 Static Shielding Results

• Static (w/o vibe) shielding effectiveness measurements and simulations
performed with I, 2, and 5 mil thick stainless steal shims (4x aperture slots).
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12  Vessel 2 Static Shielding Results

• Static (w/o vibe) shielding effectiveness measurements and simulations
performed with I, 2, and 5 mil thick stainless steal shims (4x aperture slots).

• Sandia Eiger and commercial software CST were utilized.

• Very good agreement achieved with the addition of the joint contact
resistance.
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Flat Flange Mechanical Simulations

Gap Opening for Axial Input
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14 Flat Flange Modal Analysis & Measurements

Modal Frequencies: Test & Analysis

Mode Description Frequency (Hz) % Err

Test Simulation

1st Ovaling 405 407 0.5

1St Axial 480 476 -0.8

2nd Ovaling 685 675 -1.5

3rd Ovaling 960 964 0.4

2nd Axial 995 975 -2.0

3rd Axial 1120 1097 -2.1

r*

Multiple Input, Multiple Output (MIMO) control system

Very good agreement in modal
frequencies.

Will require more mechanical data
for in-depth model validation
(shapes, damping, etc.).

Multiple input, multiple output
(MIMO) control system.

Results from Brian C. Owens



15 Coupling EM-Vibe Measurement Setup

I

Testing in a large

anechoic chamber

Source Antenna

Monopole probe

Reaction ass

Piezoelectric vibration actuators

Test Cylinder

Accelerometer

,11



1 6 I EM-Vibe Demonstration

All actuators are feed in phase with a single-axis accelerometer
mounted on cylinder base (SISO vibe control system)

Oscilloscope Measurements
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17

RF2
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Preliminary Direct Injection Measurement Results
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18 Circuit Demodulation Inside Flat Flange Cylinder

The differential op-amp circuit is placed inside the cylindrical test cavity.

Internal cavity fields (997 MHz) are amplitude modulated (l kHz) through a monopole
antenna to replicate the internal fields under EM/Vibe conditions with an external EM
source.

Similar to the results from direct power injection the op-amp demodulates the signal
producing an AM modulated signal at the output
Op-amp test board
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19 1 Preliminary W-Band Circuit Testing

Circuit board illuminated with
94 GHz signal square-wave
modulated at I kHz.
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20  How Does Vibe Affect Pulsed HPEM?

As POE expands due to mechanical resonance more of the pulse
energy gets into the cavity.
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But to get the full affect of the HPEM pulse, it must be long
enough to charge or "fill" the cavity.



2 1 I Fill-Time

A resonant circuit reaches full charge in approximately Q cycles.

D Test cavity mode (TM012) has Q —20 ,000 at fo = 1 GHz,
thus the tfiu-20µS.
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22 Pulsed Repetition Rate

Using a pulsed HPEM source that has a repetition rate on the
order of the mechanical vibration rate increases the opportunity
to get larger pulses into the cavity.
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23  Summary

■ Developing an EM/Mechanical Vibe Combined Environments
program to enable the prediction of how mechanical vibrations
affect the performance of electrical systems.

■ Efforts to date include

■ demonstration of coupled field modulation associated with
mechanical vibration.

■ demonstrated demodulation effect by differential amplifiers.

■ establishing workflow techniques for an end-to-end
mechanical/electromagnetic simulation of CE problems.

■ Future efforts include

■ continued validation of simulation and measurements.

■ investigate additional joints of interest and other POE's.

■ quantify circuit effects associated with modulated fields.
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26  Coupled Workflow: SIERRA & EIGER

Implement slot domains
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