

# Re-evaluation of U.S. DOE R&D Efforts for Generic Deep Geologic Repositories – Roadmap Update

PRESENTED BY

**S. David Sevougian, PhD**

**IHLRWM 2019**  
**Knoxville, TN, USA**  
**April 16, 2019**



# Acknowledgements



- **Co-authors:** Paul Mariner, Ralph Rogers, Dave Dobson, Bob MacKinnon, Jeralyn Prouty, Laura Connolly
- **Workshop session chairs and rapporteurs,** as well as the **Technical Leads** for the SFWST Campaign work packages:
  - Dave Dobson, Argillite Session Chair;
  - Carlos Jove-Colon, Argillite Session Rapporteur and Argillite Technical Lead;
  - Paul Mariner, Crystalline Session Chair;
  - Emily Stein, Crystalline Session Rapporteur;
  - Yifeng Wang, Crystalline Technical Lead;
  - Mark Rigali, Salt Session Chair;
  - Kris Kuhlman, Salt Session Co-Rapporteur and Salt Technical Lead;
  - Melissa Mills, Salt Session Co-Rapporteur;
  - Dave Sassani, EBS Session Chair;
  - Ed Matteo, EBS Session Rapporteur and EBS Technical Lead;
  - Jens Birkholzer, International Session Chair and International Technical Lead;
  - Frank Perry, International Session Rapporteur;
  - Ernie Hardin, DPC Session Chair and DPC Technical Lead; and
  - Laura Price, DPC Session Rapporteur.
- **Many SFWST and IWM Campaign experts, national lab staff, and DOE staff who took the time to participate in this Roadmap Update Workshop**
- **National Technical Director of the SFWST Campaign, Peter Swift**
- **DOE Federal Manager, Tim Gunter**
- **Mark Tynan, formerly with DOE, now retired, the “motivator”**



# Roadmap Update Goals

**Consensus of Project experts regarding:**

**1. What has been accomplished on generic repository R&D in the U.S.**

← Work completed since the 2012 UFD R&D Roadmap

**2. What still needs to be accomplished on generic repository R&D**

→ updated 2019 R&D Roadmap or Plan

→ **Current Status: snapshot of state-of-the-art in 2019**

# 2012 UFD R&D Roadmap



- To help prioritize generic R&D for a deep geologic repository in one of three potential host-rock environments: argillite, crystalline, and bedded salt – deep borehole also considered
- Three expert decision analysis workshops conducted
- Generic R&D to be prioritized in the workshops was *quantized* as a set of ~ 354 **R&D Issues**:

- simply a *standard FEPs\** list used on repository programs worldwide (tailored to the U.S. program)
- Three basic metrics used for prioritization:
  1. Importance to the safety case (safety assessment, design/construction/operations, and confidence building)
  2. Current State-of-the-Art knowledge about the Issue
  3. Importance of Issue at various “decision points” in the repository timeline

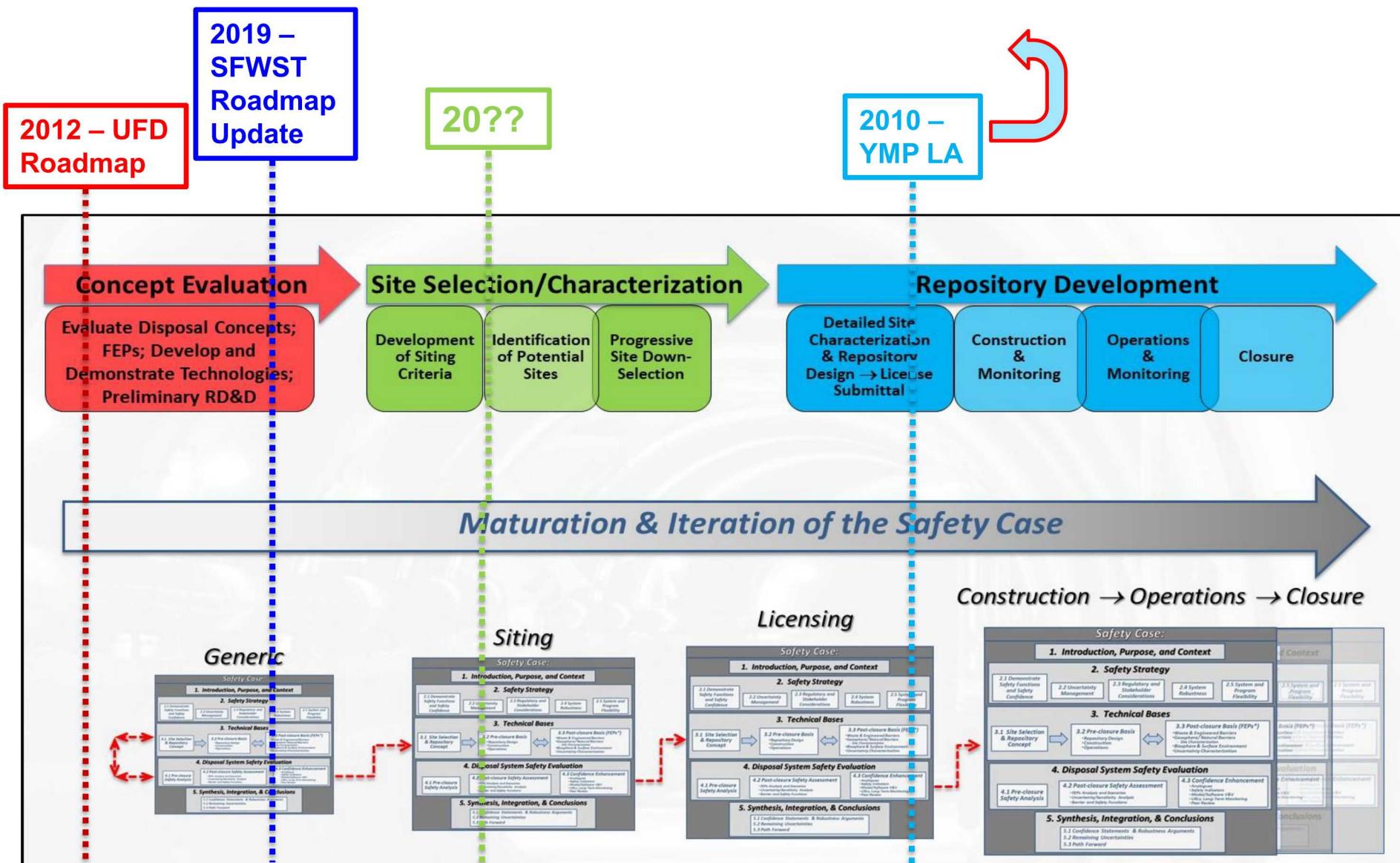
| UFD FEP Number | FEP Description                                                              | Associated Processes                                                                                                                                                                                                                                                                                                   |
|----------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.00.00        | 2. DISPOSAL SYSTEM FACTORS                                                   |                                                                                                                                                                                                                                                                                                                        |
| 2.1.00.00      | 1. WASTES AND ENGINEERED FEATURES                                            |                                                                                                                                                                                                                                                                                                                        |
| 2.1.02.00      | 1.03. WASTE CONTAINER                                                        |                                                                                                                                                                                                                                                                                                                        |
| 2.1.03.02      | General Corrosion of Waste Packages                                          | <ul style="list-style-type: none"><li>- Dry-air oxidation in anoxic condition</li><li>- Humid-air corrosion in anoxic condition</li><li>- Aqueous phase corrosion in anoxic condition</li><li>- Passive film formation and stability</li><li>- Chemistry of brine contacting WP</li><li>- Salt deliquescence</li></ul> |
| 2.1.03.03      | Stress Corrosion Cracking (SCC) of Waste Packages                            | <ul style="list-style-type: none"><li>- Residual stress distribution in WP from fabrication</li><li>- Stress development and distribution in contact with salt undergoing creep deformation</li><li>- Crack initiation, growth and propagation</li></ul>                                                               |
| 2.1.03.04      | Localized Corrosion of Waste Packages                                        | <ul style="list-style-type: none"><li>- Pitting</li><li>- Crevice corrosion</li></ul>                                                                                                                                                                                                                                  |
| 2.1.03.05      | Hydride Cracking of Waste Packages                                           | <ul style="list-style-type: none"><li>- Hydrogen diffusion through metal matrix</li><li>- Crack initiation and growth in metal hydride phases</li></ul>                                                                                                                                                                |
| 2.1.09.00      | 1.09. CHEMICAL PROCESSES - CHEMISTRY                                         |                                                                                                                                                                                                                                                                                                                        |
| 2.1.09.05      | Chemical Interaction of Water with Corrosion Products<br>- In Waste Packages | <ul style="list-style-type: none"><li>- Corrosion product formation and composition (waste form, waste package internals, waste package)</li><li>- Evolution of water chemistry in waste packages, in backfill, and in tunnels</li></ul>                                                                               |
| 2.1.09.11      | Electrochemical Effects in EBS                                               | <ul style="list-style-type: none"><li>- Enhanced metal corrosion</li></ul>                                                                                                                                                                                                                                             |
| 2.1.11.00      | 1.11. THERMAL PROCESSES                                                      |                                                                                                                                                                                                                                                                                                                        |
| 2.1.11.13      | Thermal Effects on Chemistry and Microbial Activity in EBS                   |                                                                                                                                                                                                                                                                                                                        |

Potential R&D “Issues” used in 2012  
Roadmap (based on 208 original FEPs)

\* Features, Events, and Processes

# Example Output – 2012 Roadmap




| Process (Issue) |                                     |                                                                                                                                                                   | Importance of Issue/Process to Safety Case |                                  |                    |                                                                                                                                                                                                                                                                                                                                                              | State of the Art Relative to Issue/Process         |                                                                                                                                                                                                                                                                                              |                                                                       |
|-----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| UFD FEP ID      | UFD FEP Title                       | <u>Discussion</u>                                                                                                                                                 | Performance (Safety Analysis)              | Design, Construction, Operations | Overall Confidence | <u>Discussion</u>                                                                                                                                                                                                                                                                                                                                            | *                                                  | Status                                                                                                                                                                                                                                                                                       | <u>Discussion</u>                                                     |
| 2.1.03.00       | 1.03. WASTE CONTAINER               |                                                                                                                                                                   |                                            |                                  |                    |                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                                                                                                                                                                                                                              |                                                                       |
| 2.1.03.02       | General Corrosion of Waste Packages | Also media specific Specific to EBS materials and concept design<br><br>Applies to waste container and any other "isolation" barriers that could be included in a | High                                       | Medium                           | High               | May be of high importance for performance in certain environments. In addition, the waste container is a key part of a multiple-barrier disposal system concept and must be included in the safety analysis.<br><br>More Important from a gas generation standpoint in salt and perhaps clay. More Important to granite from a hydrologic barrier capability | Fundamental Gaps in Method, Fundamental Data Needs | Considerable studies in the corrosion of a variety of metallic materials both in the U.S. and abroad that can be leveraged. Some knowledge gaps exist regarding degradation modes for various alloys under various conditions. Little/no information available regarding new/novel materials | Uncertainty in extrapolating short-term laboratory tests to long-time |

| UFD FEP ID No., Title, and Media                                                                                 | Overall Priority Score |
|------------------------------------------------------------------------------------------------------------------|------------------------|
| 2.2.01.01 - Evolution of EDZ - Clay/Shale                                                                        | 8.00                   |
| 2.2.08.01 - Flow Through the Host Rock - Salt                                                                    | 7.73                   |
| 2.2.08.02 - Flow Through the Other Geologic Units<br>- Confining units<br>- Aquifers - Salt                      | 7.73                   |
| 2.2.08.06 - Flow Through EDZ - Salt                                                                              | 7.73                   |
| 2.2.08.04 - Effects of Repository Excavation on Flow Through the Host Rock - Salt                                | 7.10                   |
| 2.2.08.07 - Mineralogic Dehydration - Salt                                                                       | 6.49                   |
| 2.2.01.01 - Evolution of EDZ - Deep Boreholes                                                                    | 6.13                   |
| 2.2.09.01 - Chemical Characteristics of Groundwater in Host Rock - Deep Boreholes                                | 5.86                   |
| 2.2.09.02 - Chemical Characteristics of Groundwater in Other Geologic Units (Non-Host-Rock)<br>- Confining units | 5.86                   |

\* Eight columns deleted regarding "importance to decision points

# Phases of a Repository Project

## (and maturation of safety case)



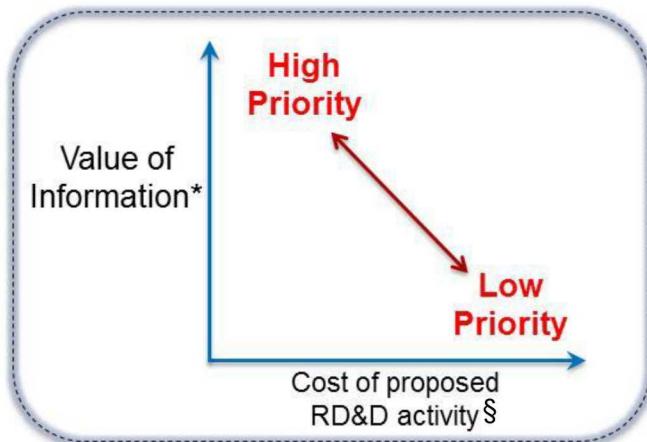
# Prioritization Needed in a Multi-Decade R&D Program



## ■ Constraints on R&D activities:

## ■ General R&D Prioritization Methodology:

→ Qualitative with a quantitative (or systematic) basis:


- Qualitative: Resources (personnel and funds) apportioned to broad work-package areas based on expert/management judgment, e.g., a work breakdown structure (WBS)
- Qualitative – Quantitative: Resources further divided based on importance of individual R&D “quanta” or “items,” with their “importance” having generally been derived from numerically based rankings developed during decision analysis workshop(s)

# Formal Prioritization Process



- Prioritization process can be formalized (as in 2012 UFD Roadmap)
  1. Identify a set of items (or “quanta”) to be evaluated (e.g., options, activities, or issues, ...)
  2. Identify criteria and associated metrics for assessing the set of items:
    - Potential to reduce key uncertainties, i.e., to change the SAL (or TRL)\*
    - Importance to the safety case
    - Other factors, e.g., cost, redundancies and/or synergies
  3. Evaluate each R&D item against the metrics
  4. Define a “utility function” (or ranking function) to combine the metric values and produce an overall ranking or score for each R&D item

\* SAL = State-of-the-Art Level  
\* TRL = Technology Readiness Level



\* = **Func** {sensitivity of performance to the information obtained; uncertainty reduction potential (TRL)}

§ Cost not formally considered in the Update Workshop.

# Granularity of R&D “Quanta” or “Items”



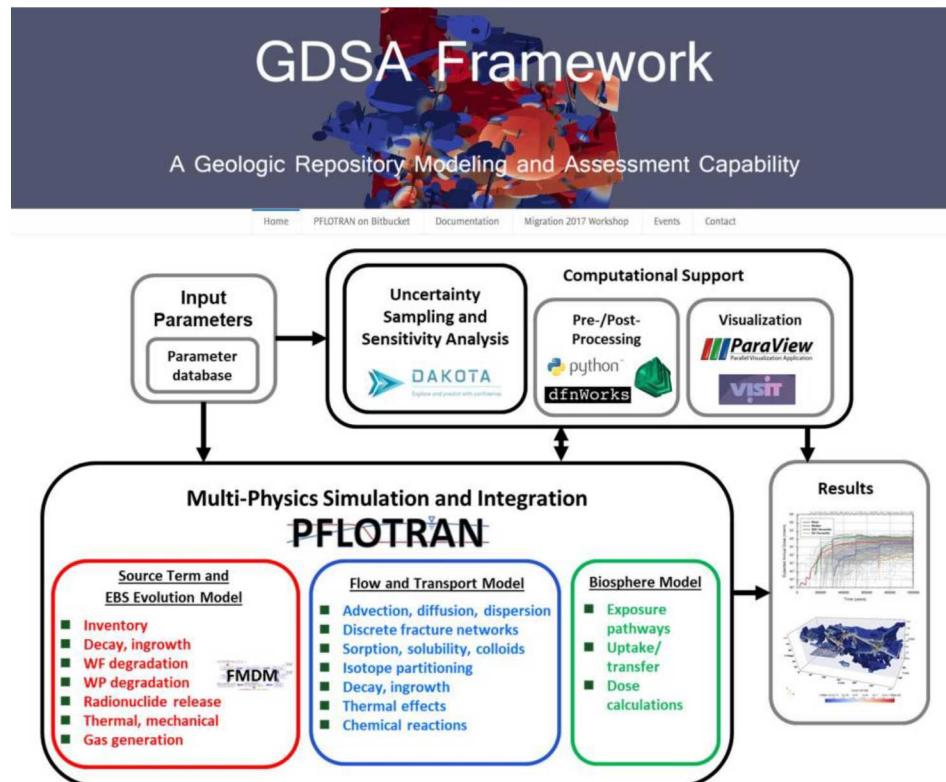
*In 2019 Update, use **R&D Activities/Tasks**:*

- Generally, we don't think in terms of FEPs; they are more or less used for a completeness check.
  - ← They are too “fine-grained” and “discretized” for a high-level “grasp” of how to assign resources and schedule
- We think more broadly (at a higher grouping level) when designing models and experiments
  - i.e., we do our work at the *activity* or task level, each of which usually encompasses several FEPs
  - WBS scope (PICS-NE) descriptions are generally too broad
- The 2019 Roadmap Update prioritizes ***R&D Activities***
- Although there is no “right” or “wrong” way to quantize R&D activities, the target level is somewhere *between the fine level of FEPs and the broader level of WBS scope (annual scope descriptions for the Project's WBS elements)*

# Generic R&D “Completion” State



Two criteria for “ending” or transitioning to next phase:


## 1. Change in State-of-the-Art Level (or Knowledge)

- R&D necessary to move the state-of-the-art to the next level (defined later in SAL table) for the given R&D item (i.e., activity) – analogous to a change in TRL\*

\* Sevoulian and MacKinnon 2017. “Technology Readiness Assessment Process Adapted to Geologic Disposal of HLW/SNF” IHLRWM 2017, Charlotte, NC.

## 2. Time constraint:

- PA “baseline” capability: Process models and their implementation in the PA system model (*GDSA Framework*) will have a certain “fidelity” that allows for a full PA calculation, i.e., a PA simulation that includes important post-closure FEPs
- Achieved by a specified date on the repository timeline (2022 for the purposes of the Update workshop)



# Roadmap Update Workshop Goals/Tasks



*Held in Las Vegas, January 2019:*

- 1) Review pre-Workshop R&D Activities (i.e., the “items” to be evaluated and prioritized)—revise as warranted
- 2) Decide upon the SAL rating and its justification for each R&D Activity
- 3) Determine the generic R&D still needed to improve the SAL for each R&D Activity
- 4) Brainstorm and add “Gap” Activities, as appropriate
- 5) Decide upon the ISC rating and its justification for each assigned R&D Activity
- 6) Discuss ongoing and “unresolved” integration issues

# Example R&D Activity Descriptions



## 109 R&D Activities Documented and Evaluated

A-07 *Analysis of clay hydration/dehydration and alteration under various environmental conditions*

- High temperature experiments on FEBEX bentonite
- Planning of TGA/DSC experiments on FEBEX bentonite
- Review of FEBEX relative humidity (RH) in the heater test

Activity Type PM, EA, LT

Applicable Codes: Process model representation with PFLOTRAN, constrained by

Safety Case Elements: SC element 3.3.1c

A-08 *Evaluation of ordinary Portland cement (OPC)*

- A new aspect of the LANL experimental work is the evaluation of ordinary Portland cement (OPC) interactions with engineered barrier materials.
- Geochemical and mineralogical evaluation of cementitious material interaction with barrier materials (steel, bentonite, clay rock) at elevated pressures and temperatures
- Cross-cuts with EBS

Activity Type LT, EA, PM, MA

Applicable Codes: PFLOTRAN, CHNOSZ, EQ3/6

Safety Case Elements: SC element 3.3.1, 4.3 (Confidence Building)

C-01 *Discrete Fracture Network (DFN) Model*

- Generation and representation of realistic fracture networks (interface with characterization)
- Fluid flow & transport in fracture networks
- Mapping tools (dfnWorks to PFLOTRAN)
- Dual continuum; matrix diffusion - transient flow particle tracker

Activity Type PM

Applicable Codes: DFNWorks, PFLOTRAN, mapDFN.py, FracMan

Safety Case Elements: SC element 4.2

# Roadmap Update Workshop Agenda



| DAY 1, TUESDAY, 1/15/2019   |                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:00 a.m.                   | Workshop Methodology & Breakout Group Instructions                                                                                                                                                                                                                                                                                                                                |
| 10:15 am - 5:00 pm          | <b>Three Host-Rock Breakout Groups:*</b> [Argillite; Crystalline; Salt]<br>1) Decide upon SAL rating and rationale and determine generic R&D still needed to decrease SAL<br>2) Brainstorm and add “Gap” Activities, as appropriate<br><i>*also consider EBS, DPC, and International Activities, as assigned</i>                                                                  |
| DAY 2, WEDNESDAY, 1/16/2019 |                                                                                                                                                                                                                                                                                                                                                                                   |
| 8:30 am – noon              | <b>Host-Rock Breakout Groups (continued):*</b> [Argillite; Crystalline; Salt]<br>1) Complete Day 1 tasks (if incomplete)<br>2) Decide upon ISC rating and justification<br>3) Discuss/document “unresolved” <u>integration</u> issues, particularly with PA-GDSA                                                                                                                  |
| 1:00 pm – 5:00 pm           | <b>Host-Rock Breakout Groups (continued),</b> <ul style="list-style-type: none"><li>• Complete morning tasks (ISC ratings)</li></ul> <b>Cross-cutting Breakout Groups [EBS; DPC; International] (<u>begin</u>; split out of the three host-rock breakouts)</b> <ul style="list-style-type: none"><li>• Resolve differing SAL and ISC ratings among host rock groups</li></ul>     |
| DAY 3, THURSDAY, 1/17/2019  |                                                                                                                                                                                                                                                                                                                                                                                   |
| 8:30 am – noon              | <b>Full Group: Summary Reports and Integration (30 minutes per breakout)</b> <ol style="list-style-type: none"><li>1) Host-Rock Groups <u>Summary Reporting</u> (order: Salt, Argillite, Crystalline)</li><li>2) Cross-cutting Breakout Groups <u>Summary Reporting</u> (order: International, DPC, EBS)</li><li>3) “Other” R&amp;D Tasks (O-1 to O-4): Discuss briefly</li></ol> |
| 1:00 pm – 2:30 pm           | <b>Report/Integrate – Full Group (continued)</b> <ol style="list-style-type: none"><li>1) Complete morning assignments listed above</li><li>2) Discuss future integration/updating still needed, e.g., a follow-up workshop, etc.</li></ol>                                                                                                                                       |

# Some Workshop Results – R&D Activity Count



## ■ Host-Rock breakout sessions in January workshop also considered EBS, International, DPC, and PA activities relevant to their host rock concept:

- EBS and International R&D Activities were often evaluated (ISC and SAL) in more than one host-rock breakout session
- EBS and International cross-cutting breakout sessions (Day 2 afternoon) resolved different ISC and SAL values for their R&D Activities, given in the three host-rock sessions, if any

**Number of R&D Activities considered in each host-rock breakout session**

| Breakout Session | Total Number of R&D Activities Evaluated |
|------------------|------------------------------------------|
| Argillite        | 31                                       |
| Crystalline      | 40                                       |
| Salt             | 29                                       |
|                  |                                          |
| <b>Total</b>     | <b>100</b>                               |

**Number of R&D Activities included in each R&D Activity “Group” or Type (e.g., Argillite)**

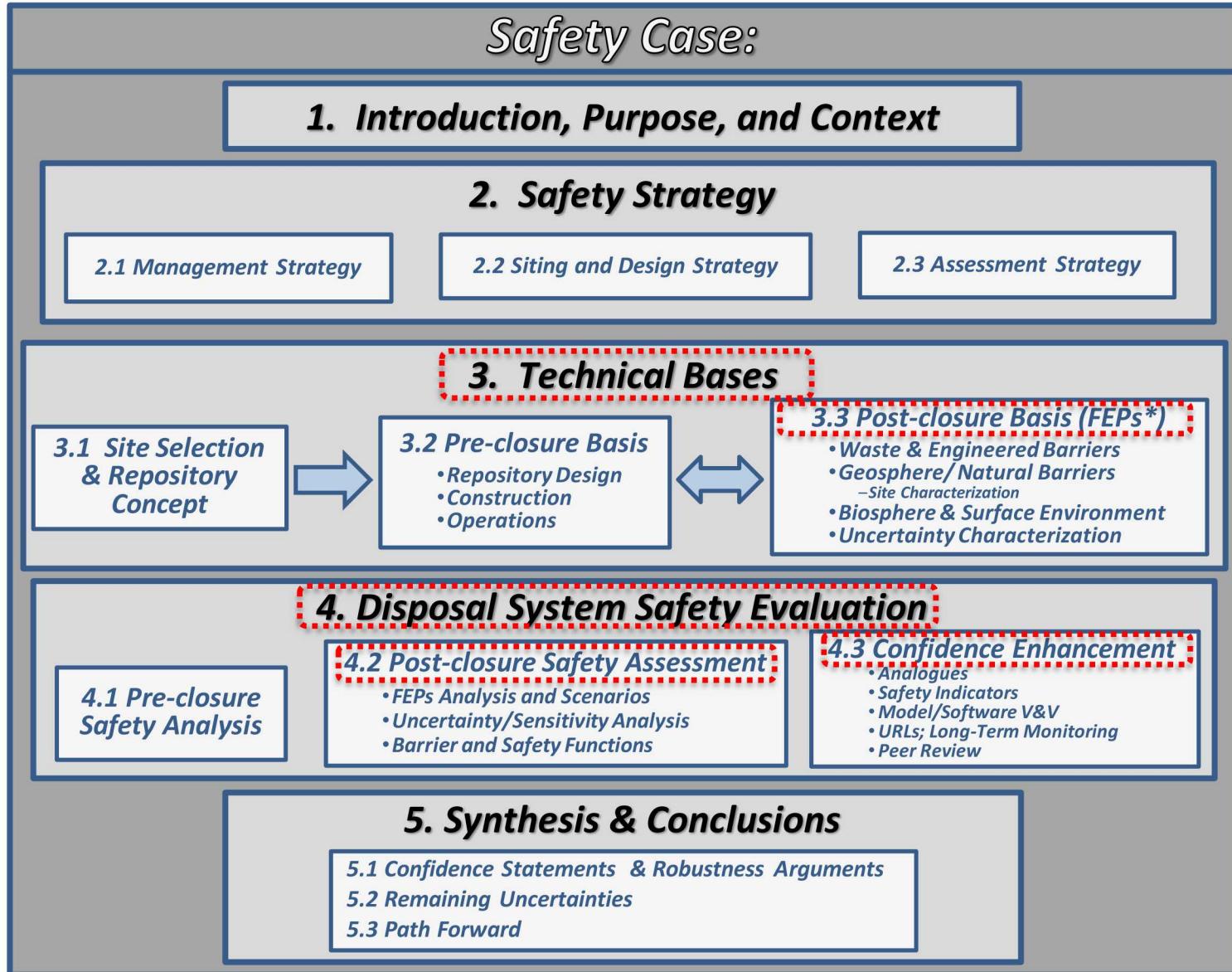
| R&D Activity Group | Total Number of R&D Activities |
|--------------------|--------------------------------|
| Argillite          | 8                              |
| Crystalline        | 17                             |
| DPC                | 6                              |
| EBS                | 20                             |
| International      | 21                             |
| Salt               | 13                             |
| Other              | 7                              |
| PA                 | 17                             |
|                    |                                |
| <b>Total</b>       | <b>109</b>                     |

# Prioritization Metrics: SAL and ISC



- The breakout group chairs and the R&D work-package technical leads made a pre-Workshop draft of ISC and SAL values and rationales
  - Theirs was an initial cut only – to facilitate discussion
  - The main task for Workshop participants was to reach consensus on SAL and ISC in the breakout sessions

## ■ State-of-the-Art Level (SAL):


- five SAL or knowledge levels, based fairly closely on the “State-of-the-Art” categories used in the original 2012 Roadmap, but simplified and scaled

| SAL Numerical Value | SAL Descriptive Value                                                |
|---------------------|----------------------------------------------------------------------|
| 5                   | <i>Fundamental Gaps in Method or Fundamental Data Needs, or Both</i> |
| 4                   | <i>Improved Representation</i>                                       |
| 3                   | <i>Improved Defensibility</i>                                        |
| 2                   | <i>Improved Confidence</i>                                           |
| 1                   | <i>Well Understood</i>                                               |

## ■ Importance to the Safety Case (ISC):

| ISC Numerical Value | ISC Descriptive Value          |
|---------------------|--------------------------------|
| 5                   | <i>High Importance to SC</i>   |
| 3                   | <i>Medium Importance to SC</i> |
| 1                   | <i>Low Importance to SC</i>    |

# Typical Elements of a Safety Case



\*FEP = Feature, Event, or Process

# ISC Metric Table



| ISC Numerical Value | ISC Descriptive Value                          | ISC Definition<br>(see Safety Case Elements figure)                                                                                                                                                                           |
|---------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                   | <b><i>High Importance to Safety Case</i></b>   | Knowledge gained by proposed R&D strongly affects one of the three elements of “Disposal System Safety Evaluation” in the Safety Case (pre-closure safety analysis, post-closure safety assessment*, confidence enhancement*) |
| 3                   | <b><i>Medium Importance to Safety Case</i></b> | Knowledge gained strongly affects one of the Technical Bases* elements of the Safety Case but the Technical Basis element itself only weakly or moderately influences a safety assessment metric                              |
| 1                   | <b><i>Low Importance to Safety Case</i></b>    | Knowledge gained is only of a supporting nature and does not strongly affect the associated process model or model inputs                                                                                                     |

\*These three SC elements are the most relevant ones for the generic repository phase (see next slide)



# SAL Metric Table

| SAL Numeric Value | SAL Descriptive Value                                                | SAL Definition                                                                                                                                                                                  | Questions to be answered for:<br>(1) Rationale for current SAL (Column M)<br>(2) R&D to move to next SAL (Column N)                                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                 | <i>Fundamental Gaps in Method or Fundamental Data Needs, or Both</i> | The representation of an issue (conceptual and/or mathematical, experimental) is under development, and/or the data or parameters in the representation of an issue (process) is being gathered | <u>Rationale for being at Level 5:</u><br>• What is under development and what data is being gathered?<br>• What are the fundamental gaps?<br><u>R&amp;D necessary to get to Level 4?</u>                                                                                                                                                                          |
| 4                 | <i>Improved Representation</i>                                       | Methods and data exist, and the representation may be reasonable but there is not widely-agreed upon confidence in the representation (scientific community and other stakeholders).            | <u>Rationale for being at Level 4:</u><br>• What methods and data currently exist?<br>• Why is the representation reasonable?<br>• Why is there not widely agreed upon confidence?<br><u>R&amp;D necessary to get to Level 3?</u><br>• e.g., what is needed to build agreement and confidence in the representation? and what additional data need to be gathered? |
| 3                 | <i>Improved Defensibility</i>                                        | Focuses on improving the technical basis and defensibility of how an issue (process) is represented by data and/or models                                                                       | <u>Rationale for being at Level 3:</u><br>• Why and what needs to be (and can be) improved for defensibility for a generic repository?<br><u>R&amp;D necessary to get to Level 2?</u><br>• e.g., What level of effort on data and models would lead to the issue being technically defensible                                                                      |
| 2                 | <i>Improved Confidence</i>                                           | The representation of an issue is technically defensible, but improved confidence would be beneficial (i.e., lead to more realistic representation).                                            | <u>Rationale for being at Level 2:</u><br>• Why is it technically defensible?<br><u>R&amp;D necessary to get to Level 1?</u><br>• e.g., What R&D would lead to improved confidence?                                                                                                                                                                                |
| 1                 | <i>Well Understood</i>                                               | The representation of an issue (process) is well developed, has a strong technical basis, and is defensible. Additional R&D would add little to the current understanding                       |                                                                                                                                                                                                                                                                                                                                                                    |

# Some Workshop Results – Expert Consensus on SAL and ISC Values



ID (\*gap) Activity

E-03 *THC processes in EBS*

| 2019 Score |
|------------|
| M-H        |

Desc • Engineered barrier (metal-clay-rock) material interactions & experimental data  
• Modeling (thermodynamic & reactive transport) includes temperatures relevant to DPC. Provide chemical constraints for SNF degradation/radionuclide transport.

Type PM, LT, EA

Codes PFLOTRAN, CHNOSZ, EQ3/6

Elements SC element 3.3.1, 4.2 b, 3.2

ISC High

Rationale High importance for design/construction arguments affecting disposal system design that utilize backfill/buffer as an engineered barrier and potential generation of preferential pathways through the EDZ- Note this source term model/testing is more important in crystalline case; less important in case of Salt concept AND NOT directly applicable in brine conditions

SAL 4 Improved Representation

Rationale • Chemical processes still under development, particularly at elevated temperature conditions.  
• Gained improved understanding of phase mineralogy & modeling methods.

R&D Needed May be of high importance for performance in certain environments and disposal concepts that utilize backfill/buffer as an engineered barrier - governs "source term" release upon failure of waste packages for certain designs in certain environments.

High importance for design/construction - could effect disposal system design that utilize backfill/buffer as an engineered barrier, how it is constructed, and emplacement of waste and backfill/buffer (i.e., size of waste packages and spacing).

High importance for overall confidence - secondary isolation barrier and long-term barrier performance.

# 2012 Issue and 2019 Activity Rankings




- 2012 UFD Roadmap rankings – used both numerical ordering and broad categories (H, M, L):

FEPs or “R&D Issues”:

“priority score”

| UFD FEP ID No., Title, and Media                                                                                                          | Overall Priority Score |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2.2.01.01 - Evolution of EDZ - Clay/Shale                                                                                                 | 8.00                   |
| 2.2.08.01 - Flow Through the Host Rock - Salt                                                                                             | 7.73                   |
| 2.2.08.02 - Flow Through the Other Geologic Units - Confining units - Aquifers - Salt                                                     | 7.73                   |
| 2.2.08.06 - Flow Through EDZ - Salt                                                                                                       | 7.73                   |
| 2.2.08.04 - Effects of Repository Excavation on Flow Through the Host Rock - Salt                                                         | 7.10                   |
| 2.2.08.07 - Mineralogic Dehydration - Salt                                                                                                | 6.49                   |
| 2.2.01.01 - Evolution of EDZ - Deep Boreholes                                                                                             | 6.13                   |
| 2.2.09.01 - Chemical Characteristics of Groundwater in Host Rock - Deep Boreholes                                                         | 5.86                   |
| 2.2.09.02 - Chemical Characteristics of Groundwater in Other Geologic Units (Non-Host-Rock) - Confining units - Aquifers - Deep Boreholes | 5.86                   |
| 2.2.09.05 - Radionuclide Speciation and Solubility in Host Rock - Deep Boreholes                                                          | 5.86                   |
| 2.2.09.06 - Radionuclide Speciation and Solubility in Other Geologic Units (Non-Host-Rock) - Deep Boreholes                               | 5.86                   |
| 2.2.09.03 - Chemical Interactions and Evolution of Groundwater in Host Rock - Deep Boreholes                                              | 5.40                   |



Quantitative → qualitative score”



- 2019 SFWST Roadmap Update rankings – broad categories only:

- High (H), Medium (M), or Low (L) categories for the R&D Activity priority scores
- Priority score or ranking to be derived from the convolution of the two metrics: SAL & ISC

# R&D Activity Priority Score (using ISC × SAL product)



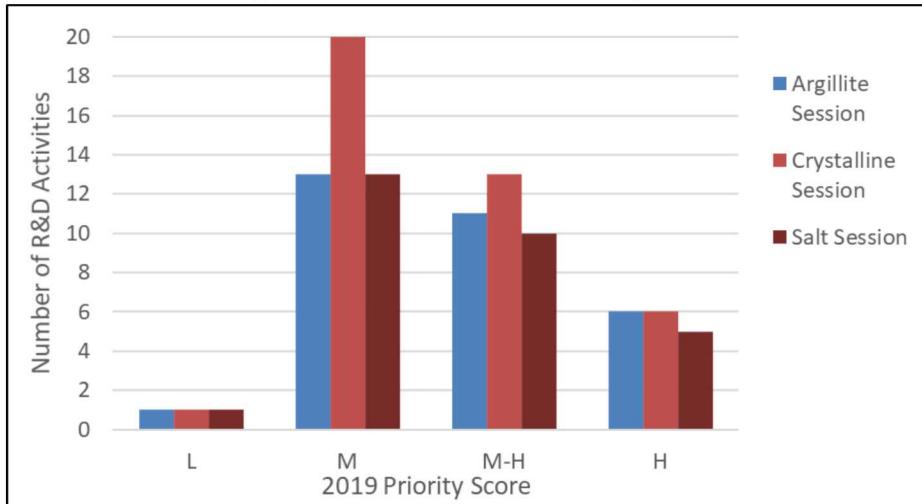
ISC (importance to safety case) value:

| ISC Numerical Value | ISC Descriptive Value          |
|---------------------|--------------------------------|
| 5                   | <i>High Importance to SC</i>   |
| 3                   | <i>Medium Importance to SC</i> |
| 1                   | <i>Low Importance to SC</i>    |



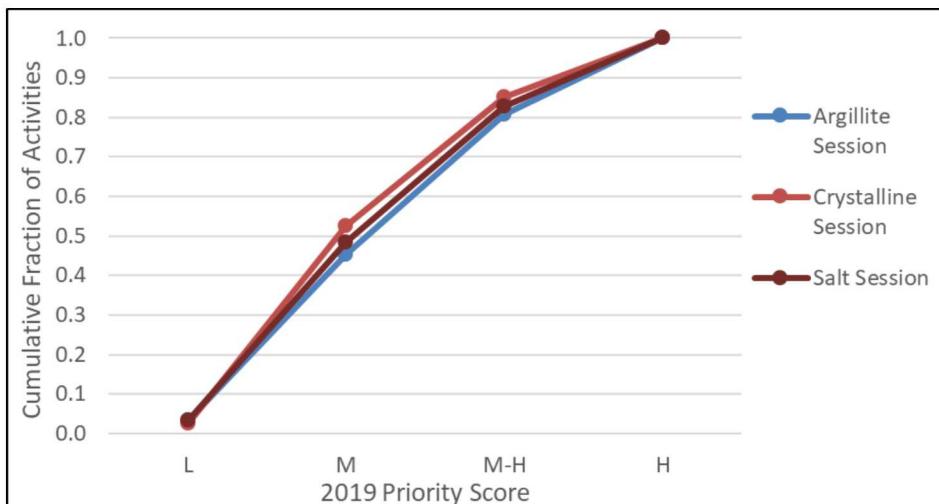
SAL (state of the art) value

| SAL Numerical Value | SAL Descriptive Value                                                |
|---------------------|----------------------------------------------------------------------|
| 5                   | <i>Fundamental Gaps in Method or Fundamental Data Needs, or Both</i> |
| 4                   | <i>Improved Representation</i>                                       |
| 3                   | <i>Improved Defensibility</i>                                        |
| 2                   | <i>Improved Confidence</i>                                           |
| 1                   | <i>Well Understood</i>                                               |


Final R&D Priority Score for an Activity

| SAL:       | 1 | 2 | 3 | 4   | 5 |
|------------|---|---|---|-----|---|
| ISC:       |   |   |   |     |   |
| High (5)   | L | M | M | M-H | H |
| Medium (3) | L | M | M | M   | M |
| Low (1)    | L | L | L | L   | L |

# Some Workshop Results – Summary of Priority Scores for Host-Rock Sessions

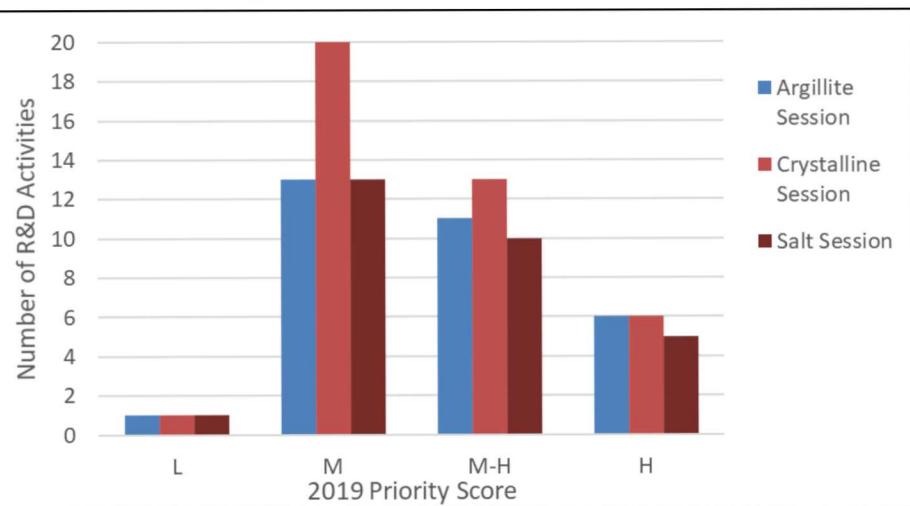



Histogram of R&D Activity Scores

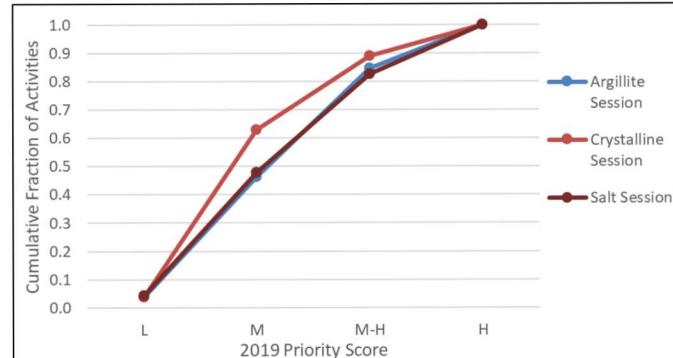
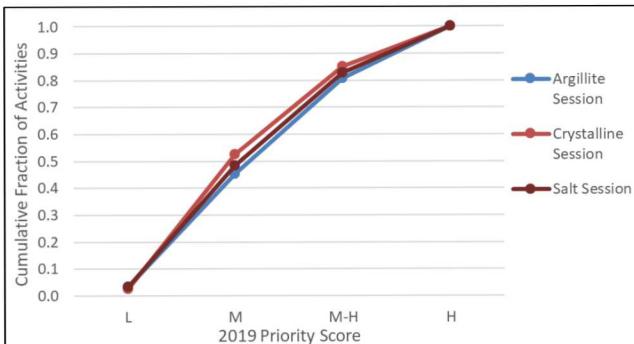
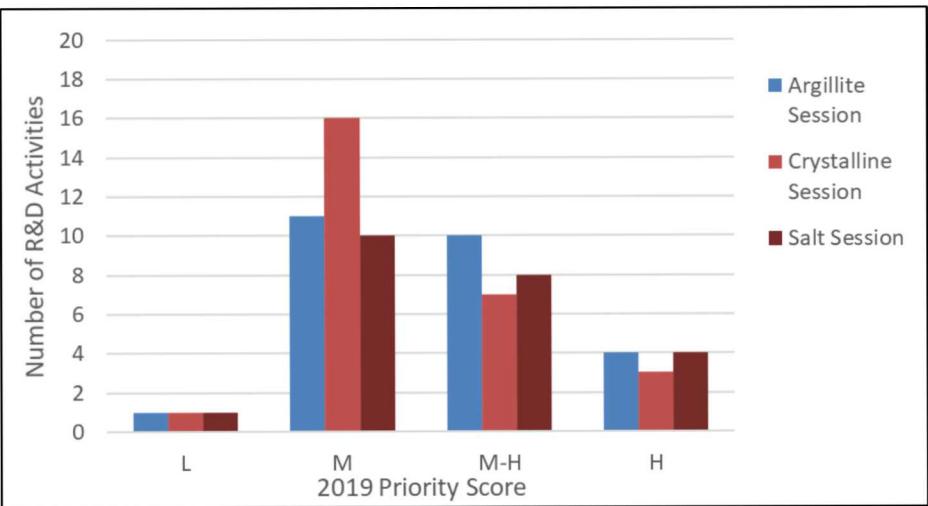


| Breakout Session | Total Number of R&D Activities Evaluated |
|------------------|------------------------------------------|
| Argillite        | 31                                       |
| Crystalline      | 40                                       |
| Salt             | 29                                       |

Cumulative Fraction of R&D Activity Scores




- Apparent uniformity of scoring among host-rock breakout groups
- Good “calibration”?




# “Gap” Activities

- Gap or long-term activities altered the results somewhat when removed from the charts:

Histogram of all R&D Activity Scores



Histogram of “current” Activities (no “gaps”)



# “High Impact R&D Topics”



- Groupings of similar R&D Activities with High and Medium-High Priority Scores:

| High Impact R&D Topics    | High Priority                       | Medium-High Priority                  |
|---------------------------|-------------------------------------|---------------------------------------|
| High temperature impacts  | D-1, D-4, I-4, I-6, I-16, E-11, S-5 | I-2, I-3, I-7, E-10                   |
| Buffer and seal studies   | I-4, E-9, E-17, A-8, C-15           | I-2, I-3, I-7, A-4, C-6, C-8, C-11    |
| Generic PA Models         | P-1, P-2, P-3, P-4, P-11, P-13      | P-10, P-14                            |
| Coupled processes (Salt)  | S-1, S-3, S-4                       | I-12, I-13, I-14, S-2, S-7, S-8, S-11 |
| Gas flow in the EBS       | I-6, I-8, I-18                      | I-9, P-17                             |
| Criticality               | D-1, D-4, D-5                       |                                       |
| Waste Package degradation | C-16, P-12                          | E-4, E-6                              |
| Radionuclide Transport    | P-6                                 | C-11, C-13, C-14, P-15, P-16          |
| In-Package Chemistry      | E-14                                | E-2, E-20, P-15, P-16                 |

- Helpful snapshot of overall R&D program; can help focus future R&D work

# Some Insights



## ■ Much generic R&D accomplished since 2012 Roadmap:

- Through R&D both in the U.S. and through many nicely leveraged International collaborations (most in URLs)
- State-of-the-Art knowledge level (SAL) has improved for many Activities/FEPs

## ■ Need for continuing generic R&D in a number of identified “High Impact” Topical Areas, and for several other R&D Activities

- Generic R&D needed has been identified by consensus of Project experts during a 3-day decision-analysis Roadmap Update Workshop (January 2019)

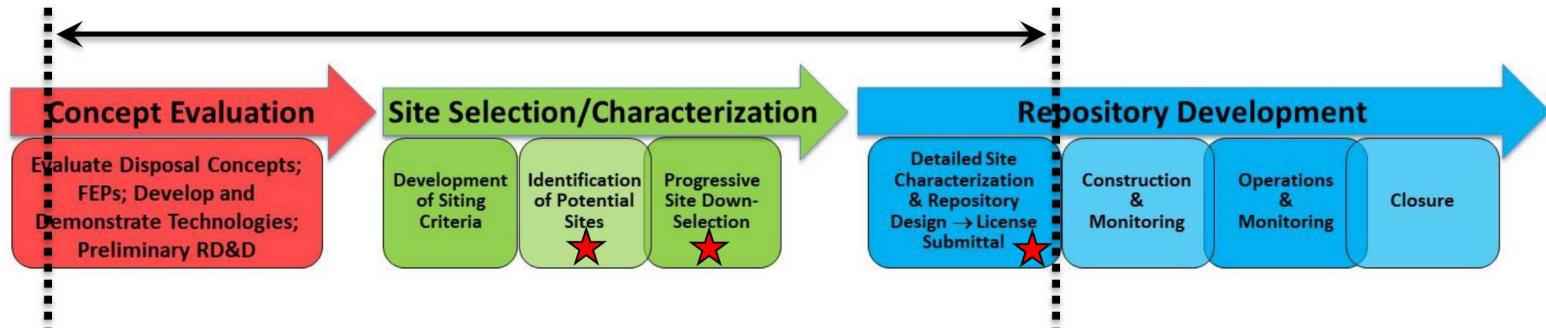
## ■ Some obvious new priorities in the intervening seven years:

- Possible direct disposal of dual-purpose canisters (DPCs) implies that criticality FEPs should be re-examined, and mitigation methods considered if necessary

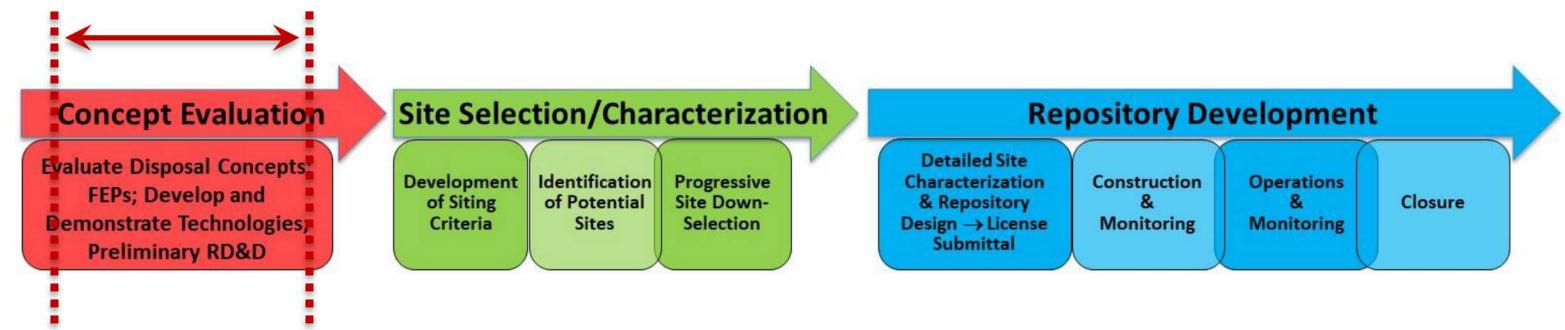
## ■ PA-GDSA modeling provides insights for the ISC value of various R&D Activities

# Thanks for your Attention!






# Back-Up Slides


# Simplified Prioritization Methodology for 2019



- 2012 UFD Roadmap considered “siting decision points (★)” in its utility (or “scoring”) function for R&D Issues



- 2019 Roadmap Update takes a simpler view of generic R&D prioritization, by concentrating more definitely on the generic R&D phase (“Concept Evaluation” phase)—creates a more qualitative utility function:



# 1. Introduction, Purpose, and Context

## 2. Safety Strategy

### 2.1 Management Strategy

- a. Organizational/mgmt. structure
- b. Safety culture & QA
- c. Planning and Work Control
- d. Knowledge management
- e. Oversight groups

### 2.2 Siting & Design Strategy

- a. National laws
- b. Site selection basis & robustness
- c. Design requirements
- d. Disposal concepts
- e. Intergenerational equity

### 2.3 Assessment Strategy

- a. Regulations and rules
- b. Performance goals/safety criteria
- c. Safety functions/multiple barriers
- d. Uncertainty characterization
- e. RD&D prioritization guidance

## 3. Technical Bases

### 3.1 Site Selection

- a. Siting methodology
- b. Repository concept selection
- c. FEPs Identification
- d. Technology development
- e. Transportation considerations
- f. Integration with storage facilities

### 3.2 Pre-closure Basis

- a. Repository design & layout
- b. Waste package design
- c. Construction requirements & schedule
- d. Operations & surface facility
- e. Waste acceptance criteria
- f. Impact of pre-closure activities on post-closure

### 3.3 Post-closure Bases (FEPs)

#### 3.3.1 Waste & Engineered Barriers Technical Basis

- a. Inventory characterization
- b. WF/WP technical basis
- c. Buffer/backfill technical basis
- d. Shafts/seals technical basis
- e. UQ (aleatory, epistemic)

#### 3.3.2 Geosphere/ Natural Barriers Technical Basis

- a. Site characterization
- b. Host rock/DRZ technical basis
- c. Aquifer/other geologic units technical basis
- d. UQ (aleatory, epistemic)

#### 3.3.3 Biosphere Technical Basis

- a. Biosphere & surface environment:
  - Surface environment
  - Flora & fauna
  - Human behavior

## 4. Disposal System Safety Evaluation

### 4.1 Pre-closure Safety Analysis

- a. Surface facilities and packaging
- b. Mining and drilling
- c. Underground transfer and handling
- d. Emplacement operations
- e. Design basis events & probabilities
- f. Pre-closure model/software validation
- g. Criticality analyses
- h. Dose/consequence analyses

### 4.2 Post-closure Safety Assessment

- a. FEPs analysis/screening
- b. Scenario construction/screening
- c. PA model/software validation
- d. Barrier/safety function analyses and subsystem analyses
- e. PA and Process Model Analyses/Results
- f. Uncertainty characterization and analysis
- g. Sensitivity analyses

### 4.3 Confidence Enhancement

- a. R&D prioritization
- b. Natural/anthropogenic analogues
- c. URL & large-scale demonstrations
- d. Monitoring and performance confirmation
- e. International consensus & peer review
- f. Verification, validation, transparency
- g. Qualitative and robustness arguments

## 5. Synthesis & Conclusions

- a. Key findings and statement(s) of confidence
- b. Discussion/disposition of remaining uncertainties
- c. Path forward

# Breakout Group Compositions



| Name                  | Email                                                                                                       | Agency | Session/Assignment                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------|
| Birkholzer, Jens      | <a href="mailto:jtbirkholzer@lbl.gov">jtbirkholzer@lbl.gov</a>                                              | BNL    | Member: Argillite; Chair: <a href="#">Intl</a>        |
| Boukalfa, Hakim       | <a href="mailto:hakim@lanl.gov">hakim@lanl.gov</a>                                                          | LANL   | Member: Crystalline                                   |
| Brady, Patrick        | <a href="mailto:pvbrady@sandia.gov">pvbrady@sandia.gov</a>                                                  | SNL    | Member: Salt; Member: <a href="#">DPC</a>             |
| Buck, Edgar           | <a href="mailto:edgar.buck@pnnl.gov">edgar.buck@pnnl.gov</a>                                                | PNNL   | Member: Argillite                                     |
| Capruscio, Florie     | <a href="mailto:floriec@lanl.gov">floriec@lanl.gov</a>                                                      | LANL   | Member: Argillite; Member: <a href="#">Intl</a>       |
| Clark, Robert         | <a href="mailto:robert.clark@nuclear.energy.gov">robert.clark@nuclear.energy.gov</a>                        | DOE NV | Member: Salt                                          |
| Dobson, Dave          | <a href="mailto:david.dobson@nrss-llc.com">david.dobson@nrss-llc.com</a>                                    | NRSS   | Chair: Argillite                                      |
| Dobson, Pat           | <a href="mailto:pfdobson@lbl.gov">pfdobson@lbl.gov</a>                                                      | BNL    | Member: Crystalline; Member: <a href="#">EBS</a>      |
| Ebert, William        | <a href="mailto:ebert@anl.gov">ebert@anl.gov</a>                                                            | ANL    | Member: Argillite; Member: <a href="#">EBS</a>        |
| Freeze, Geoff         | <a href="mailto:gafreez@sandia.gov">gafreez@sandia.gov</a>                                                  | SNL    | Member: Crystalline; Member: <a href="#">EBS</a>      |
| Gulitinan, Eric       | <a href="mailto:eric.gulitinan@lanl.gov">eric.gulitinan@lanl.gov</a>                                        | LANL   | Member: Salt                                          |
| Gunter, Timothy       | <a href="mailto:timothy.gunter@doe.gov">timothy.gunter@doe.gov</a>                                          | DOE NV | Observer                                              |
| Hammond, Glenn        | <a href="mailto:gehammo@sandia.gov">gehammo@sandia.gov</a>                                                  | SNL    | Member: Salt; Member: <a href="#">EBS</a>             |
| Hanson, Brady         | <a href="mailto:brady.hanson@pnnl.gov">brady.hanson@pnnl.gov</a>                                            | PNNL   | Member: Argillite                                     |
| Hardin, Ernie         | <a href="mailto:ehardin@sandia.gov">ehardin@sandia.gov</a>                                                  | SNL    | Member: Salt; Chair: <a href="#">DPC</a>              |
| Howard, Rob           | <a href="mailto:howardr1@ornl.gov">howardr1@ornl.gov</a>                                                    | ORNL   | Member: Argillite; Member: <a href="#">DPC</a>        |
| Jerden, Jim           | <a href="mailto:jjerden@anl.gov">jjerden@anl.gov</a>                                                        | ANL    | Member: Argillite                                     |
| Jove-Colon, Carlos    | <a href="mailto:cjovec@sandia.gov">cjovec@sandia.gov</a>                                                    | SNL    | Rapporteur: Argillite                                 |
| Kessler, John         | <a href="mailto:john@lkesslerassociates.com">john@lkesslerassociates.com</a>                                | NRSS   | Member: Crystalline; Member: <a href="#">DPC</a>      |
| Kelley, Rick          | <a href="mailto:rekelley@lanl.gov">rekelley@lanl.gov</a>                                                    | LANL   | Member: Crystalline                                   |
| Kuhlim, Kris          | <a href="mailto:kkuhlim@sandia.gov">kkuhlim@sandia.gov</a>                                                  | SNL    | Rapporteur: Salt                                      |
| LaForce, Tara         | <a href="mailto:tlaforc@sandia.gov">tlaforc@sandia.gov</a>                                                  | SNL    | Member: Salt; Member: <a href="#">DPC</a>             |
| Leslie, Bret          | <a href="mailto:leslie@nwtrb.gov">leslie@nwtrb.gov</a>                                                      | NWTRB  | Observer                                              |
| Mariner, Paul         | <a href="mailto:pmariner@sandia.gov">pmariner@sandia.gov</a>                                                | SNL    | Chair: Crystalline                                    |
| Matteo, Ed            | <a href="mailto:enmatte@sandia.gov">enmatte@sandia.gov</a>                                                  | SNL    | Member: Argillite; Rapporteur: <a href="#">EBS</a>    |
| McMahon, Kevin        | <a href="mailto:kamcmah@sandia.gov">kamcmah@sandia.gov</a>                                                  | SNL    | Member: Crystalline; Member: <a href="#">EBS</a>      |
| Mills, Melissa        | <a href="mailto:mmills@sandia.gov">mmills@sandia.gov</a>                                                    | SNL    | Member: Salt                                          |
| Monroe-Ramsey, Jorge  | <a href="mailto:Jorge.Monroe-Ramsey@nuclear.energy.gov">Jorge.Monroe-Ramsey@nuclear.energy.gov</a>          | DOE NV | Member: Crystalline; Member: <a href="#">Intl</a>     |
| Nair, Prasad          | <a href="mailto:Prasad.Nair@doe.gov">Prasad.Nair@doe.gov</a>                                                | DOE NV | Member: Salt; Member: <a href="#">Intl</a>            |
| Nole, Michael         | <a href="mailto:mtnole@sandia.gov">mtnole@sandia.gov</a>                                                    | SNL    | Member: Argillite; Member: <a href="#">DPC</a>        |
| Nutt, Mark            | <a href="mailto:mark.nutt@pnnl.gov">mark.nutt@pnnl.gov</a>                                                  | PNNL   | Member: Crystalline                                   |
| Orchard, John         | <a href="mailto:john.orchard@nuclear.energy.gov">john.orchard@nuclear.energy.gov</a>                        | DOE NV | Member: Crystalline                                   |
| Painter, Scott        | <a href="mailto:paintersl@ornl.gov">paintersl@ornl.gov</a>                                                  | ORNL   | Member: Crystalline; Member: <a href="#">DPC</a>      |
| Perry, Frank          | <a href="mailto:fperry@lanl.gov">fperry@lanl.gov</a>                                                        | SNL    | Member: Crystalline; Rapporteur: <a href="#">Intl</a> |
| Price, Laura          | <a href="mailto:llprice@sandia.gov">llprice@sandia.gov</a>                                                  | SNL    | Member: Argillite; Rapporteur: <a href="#">DPC</a>    |
| Prouty, Jeralyn       | <a href="mailto:jprouty@sandia.gov">jprouty@sandia.gov</a>                                                  | NRSS   | Member: Salt; Rapporteur: Combined                    |
| Rigali, Mark          | <a href="mailto:mirigal@sandia.gov">mirigal@sandia.gov</a>                                                  | SNL    | Chairman: Salt                                        |
| Rogers, Ralph         | <a href="mailto:ralroge@sandia.gov">ralroge@sandia.gov</a>                                                  | NRSS   | Member: Argillite; Rapporteur: Combined               |
| Russell, Glenn        | <a href="https://geospatial.intl.gov/bios/GlennRussell/">https://geospatial.intl.gov/bios/GlennRussell/</a> | INL    | Member: Crystalline                                   |
| Rutqvist, Jonny       | <a href="mailto:jrutqvist@lbl.gov">jrutqvist@lbl.gov</a>                                                    | BNL    | Member: Salt; Member: <a href="#">Intl</a>            |
| Sassani, Dave         | <a href="mailto:dsassan@sandia.gov">dsassan@sandia.gov</a>                                                  | SNL    | Member: Argillite; Chair: <a href="#">EBS</a>         |
| Scaglione, John       | <a href="mailto:scaglionejm@ornl.gov">scaglionejm@ornl.gov</a>                                              | ORNL   | Member: Argillite; Member: <a href="#">DPC</a>        |
| Sevouou, Dave         | <a href="mailto:sdsevou@sandia.gov">sdsevou@sandia.gov</a>                                                  | SNL    | Observer; Chair: Combined                             |
| Spezialetti, Bill     | <a href="mailto:bill.spezialetti@doe.gov">bill.spezialetti@doe.gov</a>                                      | DOE NV | Member: Argillite; Member: <a href="#">Intl</a>       |
| Stauffer, Phil        | <a href="mailto:stauffer@lanl.gov">stauffer@lanl.gov</a>                                                    | LANL   | Member: Salt; Member: <a href="#">EBS</a>             |
| Stein, Emily          | <a href="mailto:ergiamb@sandia.gov">ergiamb@sandia.gov</a>                                                  | SNL    | Rapporteur: Crystalline                               |
| Stockinger, Siegfried | <a href="mailto:siegfried.stockinger@nuclear.energy.gov">siegfried.stockinger@nuclear.energy.gov</a>        | DOE NV | Member: Salt                                          |
| Swift, Peter          | <a href="mailto:pn swift@sandia.gov">pn swift@sandia.gov</a>                                                | SNL    | Member: Crystalline; Member: <a href="#">Intl</a>     |
| Tynan, Mark           | <a href="mailto:mark.tynan@doe.gov">mark.tynan@doe.gov</a>                                                  | DOE NV | Member: Crystalline                                   |
| Viswanathan, Hari     | <a href="mailto:viswana@lanl.gov">viswana@lanl.gov</a>                                                      | LANL   | Member: Crystalline; Member: <a href="#">Intl</a>     |
| Wang, Yifeng          | <a href="mailto:ywang@sandia.gov">ywang@sandia.gov</a>                                                      | SNL    | Member: Crystalline; Member: <a href="#">Intl</a>     |
| Weaver, Doug          | <a href="mailto:douglas_weaver@lanl.gov">douglas_weaver@lanl.gov</a>                                        | LANL   | Member: Salt                                          |
| Zavrin, Mavrik        | <a href="mailto:zavarin1@llnl.gov">zavarin1@llnl.gov</a>                                                    | LLNL   | Member: Argillite                                     |
| Zheng, Liange         | <a href="mailto:zheng@lbl.gov">zheng@lbl.gov</a>                                                            | BNL    | Member: Argillite; Member: <a href="#">EBS</a>        |

# R&D “Completion” State for Site Evaluation



- At the time of site evaluation and/or selection, the PA and process models must be “run ready,” and a good safety case framework already started
- Models and tools must already be “in hand” to initiate a siting stage in any potential host rock
- Good repository designs for any potential host rock must have already been developed (designs suitable for the U.S. waste packaging, i.e., DPCs)
- Data needed at the beginning of site evaluation process versus that needed after a final site is selected should be documented
- Generic site-characterization plans for each potential host rock

# Examples of Activity Quantization



## ■ *Reasonable:*

|     |                                       |                                                                                                                                                                                                                                                                    |
|-----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-1 | Discrete Fracture Network (DFN) Model | <ul style="list-style-type: none"><li>• Generation and representation of realistic fracture networks</li><li>• Fluid flow &amp; transport in fracture networks</li><li>• Mapping tools (dfnWorks to PFLOTRAN)</li><li>• Dual continuum; matrix diffusion</li></ul> |
|-----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## ■ *Too broad:*

|      |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-13 | Reactive transport modeling of groundwater chemistry evolution and radionuclide transport | <p>This task will focus on the following improvements to the existing reactive transport modeling capability:</p> <ul style="list-style-type: none"><li>• Incorporation of interfacial reactions (e.g., surface complexation), microbially mediated reactions, colloid-facilitated transport, and radionuclide decay and ingrowth;</li><li>• Improved representation of spatial heterogeneity of chemical and transport properties</li><li>• Coupling of radionuclide transport with evolving water chemistry along a transport pathway (e.g. alkaline plumes)</li><li>• Robustness of numerical algorithms for coupling chemical reactions with solute transport</li><li>• Explicit consideration of structural complexity of the media in the solute transport (e.g. the fracture-matrix system in DRZ or the micro, macro-pores system for host clay rock).</li></ul> |
|------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|