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2 I Task-specific compressive sensing

oTraditional Optics
- 1:1 mapping from scene to detector location

Optimized to create image

Compressive sensing

Measures aspects of the scene with
high information content

Not optimized for human observer

•Classifying MNIST dataset

. Classifying hand written digits

. Proof of concept task

oHow do we select the to measure data?



3 A sensing matrix as hardware

oMapping object space to measurement
• Multiple input angle to each measurement

oDistant object

input pixel = input angle

o Multiple input angles to each detector

oPhysical optics

• Constrains sensing matrix

o Nonnegative

o Sparse

• Requires characterization
of performance

Sensing matrix
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4 Optical designs

°Multiple architectures possible

°Direct mapping

o Prism array

• Conventional optics

0 DMD architecture



5 Prism array

'Direct realization of sensing matrix

O A prism for each nonzero element

o Maps input angle onto detector

o Weighted using Absorption

Parameters
o Size

O Overfill detector

O Position
O Clusters around each detector

O Angle
o Optimized

mAutomated generation

Inputs
o basic geometry
• Sensing matrix

O Zemax OpticStudio API

Input angle
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6 Parallel measurements conventional optics

oDirect imaging

1:1 mapping

Image stop

O Uniform irradiance at detector

oTelecentric

O Intermediate image plane

O Magnification independent of
lens separation

oDivision of aperture

o Fields separated at
intermediate image plane

Parallel measurements

Intermediate image plane

Weighting mask



7 I Weighting implemented using a DMD

oDigital micromirror device (DMD)
O Allows for dynamically setting sensing matrix without changing hardware

O At image plane

oSeparating information

o DMD - channels separated, fields separated

Field of view magnification = 0.25 prism array

r lens 1

o Detectors channels separated, fields overlapping 
L

• Optimizing throughput

• Maximize magnification of detector

O Maximize field of view

O Constrained by DMD size

o Constrained by realistic lenses

lens - 2

f1+
f2

stop
objective lens

fobjective = 5Omm DMD

frelay 5m,m , minimum
beam diamter

detectors 110. relay lens



8 I Simulating system performance

oSystem response

o Detector sensitivity to each input angle

oNon-sequential raytrace

o Scan over 28 by 28 input angles

o Zemax OpticStudio API
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10 I DMD design faithfully reproduces sensing matrix

°System response very similar
to sensing matrix

• Minimal blurring

I Lost values

• Ray trace hits edge
of micromirror

o Expected to be removed
with nonzero instantaneous
field of view.

o Collimated source gives worst
case

k=6

DMD Architecture
em Response

k 4 k=5

•

9



11 I Good reproduction of sensing matrix

•Classifier trained on compressed data
O Random forest

o 60,000 training points, 10,000 test points

O 10 random training/test data sets

oBoth architectures have similar performance to
sensing matrix

o Within 3% over the range of 1 to 9 detectors

oBlurring improves performance

o Decreases sparsity without increasing elements

100

80

60

L-) 40

20

0
1

Classification of MNIST dataset

—I— Prism array

DMD

—I— Sensing matrix

2 3 4 5 6 7 8 9

Classification accuracy relative to sensing matrix

0.5

C; 0.00

a)
c —0.5

—1.0

>.
u —1.5

t-j —2.0

—2.5

—I— Prism array

DMD

1 2 3 4 5 6

Number of Detectors
97



12 Similar throughput to imaging optics

oImaging optics throughput

O Instantaneous field of view

Area of aperture

oCompressive sensing throughput

O Instantaneous field of view
. Large field of view
. Weighted by sensing matrix

O Effective area
. Prism array - area of detector
. DMD design - effective area at prism plane

Comparison

F/4 lens with 5pLna pixel —

O 9 detectors prism array —

O 9 detector DMD design —

•



13 How do the systems perform under non-ideal inputs

NAdded aberration to the system
o 9 detector case

o Spherical aberration at the aperture plane

EZernike surface
o Converted to waves of Seidel aberrations

NArchitectures respond very different to aberration

o DMD architecture
• Performance decreases with increasing aberration

o Prism architecture
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14 I Design and Evaluation of Task-Specific Compressive Optical System

oRadiometric Questions?
O Similar to F/4 lens
with 51.tm pixels

• Raytracing

o System response
matrices

•Classification accuracy

o Similar to sensing matrix

O Blurring improves performance

oAberration

o Performance change highly
dependent on architecture

u

Sensing Matrix
1 k=2 k=3

100

80

60

40

v=9

k=1

k=4

k=7

Classification of MNIST dataset

20 -

0 
1

Prism array

DMD

—I— Sensing matrix

4 5 6

Number of detectors

k=3 k=2k=1

k=4

k=7

Classification accuracy relative to sensing matrix

0.5

0.0

w
`E' 0.5
w

b' —2.0

—2.5

Prisrn array

  DMD

2 3 4 5 6 7

Number of Detectors
9

2

1.5

0.5

i° 0

91-

90

89 

88 

u

< 87 -

86

85

K A
-0.5 0 0.5

Normalized pupil location

Classification of MNIST dataset

—I— Prism array

DMD

0 2

Waves of spherical aberration
10
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