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2 | Task-specific compressive sensing

"Traditional Optics

° 1:1 mapping from scene to detector location

> Optimized to create image

“Compressive sensing

> Measures aspects of the scene with
high information content

> Not optimized for human observer

=Classifying MNIST dataset
o Classifying hand written digits

> Proof of concept task

"How do we select the to measure data?
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A sensing matrix as hardware

"Mapping object space to measurement

> Multiple input angle to each measurement

=Distant object
° input pixel = input angle

> Multiple input angles to each detector

" Physical optics
> Constrains sensing matrix
> Nonnegative
° Sparse

> Requires characterization
of performance

Sensing matrix
detectors 1 2 3

Sample object space
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o DMD architecture

° Prism array
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Prism array

“Direct realization of sensing matrix
> A prism for each nonzero element
> Maps input angle onto detector

> Weighted using Absorption

=Parameters
° Size
o Overfill detector
° Position
o Clusters around each detector
> Angle
> Optimized

" Automated generation
° Inputs
> basic geometry

° Sensing matrix

° Zemax OpticStudio API

Detector
( Xdet ’ ydet)

Input angle Prism angle

(6,,8,)




6 | Parallel measurements conventional optics

“Direct imaging
> 1:1 mapping

Intermediate image plane

"Image stop

o Uniform irradiance at detector

" Telecentric
° Intermediate image plane

° Magnification independent of
lens separation

"Division of aperture

° Fields separated at
intermediate image plane

Weighting mask

o Parallel measurements
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Weighting implemented using a DMD

" Digital micromirror device (DMD)
> Allows for dynamically setting sensing matrix without changing hardware

o At image plane objective lens

fobjective = 50MM DMD

o >

Field of view magnification = 0.25 prism array
-

stop

3
"Separating information W

> DMD - channels separated, fields separated L — = = ~

| _ minimum
beam diamter

° Detectors - channels separated, fields overlapping

relay lens

=Optimizing throughput

> Maximize magnification of detector
o Maximize field of view

> Constrained by DMD size

> Constrained by realistic lenses




g I Simulating system performance

=System response

° Detector sensitivity to each input angle

"Non-sequential raytrace
° Scan over 28 by 28 input angles

o Zemax OpticStudio API




ing Matrix
Sensing tri
"Example case |

o 9 detectors

—
—

Hi
1]
L
o85yiy;
s
iy

77
g,

T4y,
Bisgy,

177
L7

vy
gy

gy
oy,




10 I DMD design faithfully reproduces sensing matrix

=System response very similar o DMD Architecture
to sensing matrix Sensing Matrix System Response
= k=2 oy TRl

° Minimal blurring

"T.ost values

° Ray trace hits edge
of micromirror

> Expected to be removed
with nonzero instantaneous
field of view.

° Collimated source gives worst
case




11 I Good reproduction of sensing matrix

=Classifier trained on compressed data

o Random forest
> 60,000 training points, 10,000 test points

° 10 random training/test data sets

"Both architectures have similar performance to
sensing matrix

> Within 3% over the range of 1 to 9 detectors

“Blurring improves performance

> Decreases sparsity without increasing elements

Classification of MNIST dataset
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12 I Similar throughput to imaging optics

*Imaging optics throughput
o Instantaneous field of view

> Area of aperture

=Compressive sensing throughput

o Instantaneous field of view
> Large field of view
> Weighted by sensing matrix

o Effective area

° Prism array — area of detector

o DMD design — effective area at prism plane

*Comparison
> F/4 lens with 5pum pixel —
° 9 detectors prism array —
> 9 detector DMD design —




13 I How do the systems perform under non-ideal inputs

" Added aberration to the system

o 9 detector case

> Spherical aberration at the aperture plane

=/ernike surface

o Converted to waves of Seidel aberrations

= Architectures respond very different to aberration
° DMD architecture
o Performance decreases with increasing aberration
° Prism architecture

° Performance slightly increases with increasing aberration

o Similar to improved performance due to blurring

2 waves of spherical
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ratomee. . QUESEIONS?

o Similar to F/4 lens
with 5um pixels
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Sensing Matrix

"Raytracing h -
° System response
matrices ~
=Classtfication accuracy - -
° Similar to sensing matrix i h
° Blurring improves performance
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