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Overview

« Mimic aerosol transport through a stress corrosion
crack (SCC)

— Pressure-driven flow
» Prototypic canister pressures
» Near-prototypic canister volume
« Explore flow rates and aerosol retention of an
engineered microchannel
— Characteristic dimensions similar to those of SCCs

* Microchannel: 28.9 ym (0.0011 in.) deep x
12.7 mm (0.500 in.) wide

* Flow length: 8.86 mm (0.349 in.) long

» Measure mass flow and aerosol concentration
Source: www.nrc.gov/waste/spent-fuel-storage/diagram-typical-dry-cask-system.html - Upstream and downstream Of micrOChan nel
— Simplified geometry with well-controlled boundary conditions
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Problem Statement

Dry Storage

| |  Whatis the potential impact of a through-wall stress corrosion
crack (SCC)?

— Relatively low availability of mobile radionuclides under normal
storage and transportation

« Significant amount of literature on aerosol transport through
idealized leak paths

— Primarily for moderate pressure differentials

* Information for combined analysis needed from following
topics
— Available source term inside canister
— Characteristics of SCC
— Flow and particle transport through prototypic SCC’s
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Organization of Analyses

Offsite Effects

Material at Risk
(MAR)

« UNF- ST&DARDS
(ORNL)

* Impact metrics
 Largely inhalation
 Dispersion models
» Inventory (Burnup, Flow and « MACCS  + HotSpot
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Spent Fuel Release Data
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Hanson, B.D., et al., “Fuel-In-Air FY0O7 Summary Report,” Pacific
Northwest National Laboratory, PNNL-17275, September 2008.

Hanson (2008) quantified releases from SNF rods
— Forced air through segmented fuel

New data may become available from High Burnup
Demonstration Project

— Sister rod testing

Average of all data
— CMD =3.46 um, GSD =2.24
— Release fraction = 1.9 x 10-°
e 4.8x10° cited in NUREG-2125
— Assumes 100% respirable
Derived quantities of interest
— MMD =24.3 um

* Resp. fraction = 6 X 103 {for particles < 3.2 um (or 10
um AED)}

* Resp. release fraction = 1.1 x107
— Normalized to mass of fuel
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Initial Aerosol Density

» Respirable particles with an AED < 10 ym
 Hanson et al., 2008
— Respirable release fraction = 1.1 X 107

« Estimate hypothetical aerosol density available for transport
— 37 PWRs
— 520 kg UO, per assembly
— Assume 10% fuel rod failure
— Assume no deposition
— Initial pressure 800 kPa (116 psia)
— Assume canister free volume of 6 m3

0.10 x 37PWRs x 5.20 x 10° mg x1.1x10™"

300 K\ _/800 kPa 3
<—460 K) ><<1oo kPa) X6 m

— Target aerosol density: ~ 7 mg/m3
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Surrogate Selection

125

» Cerium oxide (CeQO,) chosen as
surrogate

—Pceo, = .22 glcm?
—psne = 10 g/ecm? (Spent fuel)

* Aerosol PSD characteristics
—Mass median diameter (MMD)
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. —Geometric standard deviation (GSD)
Particle size distribution (PSD) of « GSD =1.88

the cerium oxide surrogate
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Engineered Microchannel

12.70 mm

(0.500 in.)
|

* Microchannel formed with paired
blocks
— High-precision gauge blocks

— Electrical discharge machined to form
34.90 mm channel
(1.374in.) _ _

—Dimensions

« Microchannel: 28.9 ym (0.0011 in.) deep x
12.7 mm (0.500 in.) wide

* Flow length: 8.86 mm (0.349 in.) long
 Bolted together to form microchannel

o » Replaceable test section
|Isometric view of

mounted microchannel  —Ultimately conduct experiments with
on upstream side representative SCC’s

12.70 mm
(0.500in.)
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Preliminary Experimental Approach

& High Pressure Fill

Aerosol

injection /

« Simulate blowdown of a pressurized canister
Low Pressure using a 0.91 m3 (240 gal) pressure tank

Upstream Mass Flow — Prototypic canister free volume ~ 6 m3
0.91 m? Storage Tank < Controller — Seeded with CeO, surrogate aerosols
Mass Fl & anUpstream APS  Simulate SCC with engineered microchannel
Microchannel — Section 4 Downstream APS — S.implifi.ed representation with typical
HEPA Filte Downstream dimensions

* Quantify the aerosols upstream and
downstream of the microchannel

| — During transient blowdown
P — Aerosol particle concentration and size
» Measure the air mass flow rate into and out
of test section
— Determine crack flow rate

E high? by high

PV

Pressure
Relief

Aerosol Aerosol
Particle Sizer Particle Sizer
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Line Loss Characterization

» Correct for presence of mass flow
Instrumentation

* Unpressurized tests

— Monodisperse polystyrene latex (PSL) beads
« 1.0, 3.1, and 4.8 ym

PSL
seeded —»|
flow — |

M\ Mass flow « Simultaneous measurement
| controller — Upstream and downstream
APS APS or meter — With and without flow controller

S868365 5931474

 Line losses based on aerosol density (mg/m?3)

— Upstream (Mass flow controller)
. With

Without

— Downstream (Mass flow meter)
__With

Without

=0.47

=0.82
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Gas Flow Measurements
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2.1E-4 _
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 Aerosol Test
1.5E-4 .
— Aerosol laden air

1.2E-4 * Post-Test Aeroso Deposﬂs

— Clean air
— Aerosol accumulations on microchannel

— Similar flow rates for Aerosol Test and Post-Test

 Indicates microchannel particle deposition
occurred early in test
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Aerosol Measurements

(Aerosol Mass Concentration)
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Aerosol Measurements

(Aerosol Mass Flow)
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Summary

« Explored flow rates and aerosol retention in an engineered microchannel
— First step to characterize hypothetical flow through an SCC

— Characteristic dimensions similar to SCCs
¢ 29 um (0.0011 in.) channel by 12.7 mm (0.500 in.) wide and 8.86 mm (0.349 in.) long

— Prototypic maximum canister pressure
. 800 kPa (116 psia)
— Aerosol concentration measured upstream and downstream of microchannel
— Results demonstrate a viable capability to measure aerosol transport under conditions of
interest
* Preliminary results
— Upstream concentration greater than downstream for first 5 hours

— Integrated aerosol mass
« Upstream 0.21 mg
 Downstream 0.12 mg

— 44% retention
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Future Work

* Improve aerosol analysis capabilities
— Dual sensor single analyzer system

— New aerosol particle sizer designed for pressure
« Eliminate mass flow instrumentation losses

» Additional tests of existing microchannel —__
— Different initial pressures Hm— Masking

. . een . Sample — Bolt through hole
— Different initial aerosol concentrations )plate *
— Repeatability tests elis

Heat-affected

« Mixing of aerosols in pressure tank  zone

* More complex microchannels
— Work up to mountable, lab-grown SCC «&-
— Characterize geometry for code validation

Mounting

Gasket flange

Sample plate
BO'tS with SCC
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