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Background

3 1 Background and Motivation

108

o Electro-optical/infrared (EO/IR)
signatures from hypervelocity impacts
originate from small, hot debris
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o System-level hypervelocity impact
R modeling relies on sub-grid fragmentation

o b N‘\w theories to predict micro-debris
‘ Glenn Chudnovsky ]
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Average Fragment Size (um)

‘ S o i o Little data exists to validate micro-debris
107 H % Grady 1000 Ring models, especially at higher strain rates
, —&— Ductile Fragmentation Model| ) ) 1
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Strain Rate

Goal of this study:

o Use the CTH shock physics code to investigate differences in the predicted strain rate at
failure (as a proxy for fragment size) and material temperature when explicitly modeling
mesoscale grain structure versus using a traditional bulk approach to asses the potential
impact on EO/IR source and signature generation
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(dominated by fracture toughness)
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Y (cm)

Input Development

CTH Input Development

2D CTH model

Aluminum sphere on aluminum plate, impacting nominally at 4 km/s

and Grady-Kipp fragmentation

SESAME equation of state with Johnson-Cook strength, Johnson-Cook fracture,

Cell structure generated in MATLAB from 2D grain growth model for a unit cell

o Scaled the unit cell so that grains are ~14 ym in diameter
o Eight grain types (eight different material initializations) in both projectile and target

grain aspect ratio

0.5

2 M ' ']l Projectile
T Target

3.5mm ] . "Grains"

1.4 mm Target

"Matrix"

Future work would expand effort to 3D CTH models and the exploration of

Grain Structure. Q Potts.
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Pure aluminum imaged by Clemex
Vision image analyzer
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MATLAB unit cell output
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Bulk Model

5 I Bulk (Isotropic) Model Overview

Bulk (Isotropic) Model:

Standard simulation method
> No grains simulated

- Baseline for comparison with mesoscale
models

Explore underlying physics through
tests of:

> Resolution
> Projectile Size
> Impact Speed

Assess effects primarily in the projectile
(most interesting results result in finite-
thickness objects)

Recall: Goal is to assess effects of grain structure on strain
rate at failure and material temperature

Major Findings:

Increasing resolution increases strain rate, but
convergence is observed in temperature

> 3.5 ym resolution was chosen for remainder of sims

Strain rate histograms have a bimodal
distribution

> The onset of the first peak and the separation
between peaks is dependent on projectile size

> 15t peak appears to be driven by transit time across
object (i.e, by a length scale, in this case projectile
diameter)

- 2 peak appears to be related to sound speed

Reducing projectile size and/or increasing
velocity, shifts to higher strain rates

For a given velocity, peak temperatures and
temperature distributions are similar between
all projectile sizes
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Bulk Model

GK Strain Rate at Failure (1/s)

GK Strain Rate at Failure (1/s)

6 I Bulk Model Results: Comparisons of Strain Rate at Failure
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Projectile size
and shape control
bimodal
distribution of
strain rates.

Smaller
projectiles
produce higher
strain rates
(smaller fragment
sizes )
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71 Bulk Model Results: Comparisons of Material Temperature

Bulk Model

Fraction of Total Mass

Cumulative Mass/Projectile Mass
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Cube (face-on)
projectiles
produce higher
temperatures
and therefore
higher expected
EO/IR signatures.

Finite targets
(more realistic
targets) may
produce strain
rates and
temperatures
that are similar
to cube
projectiles.
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass

Bulk Model

s I Bulk Model Results: Impact Velocity on Strain Rate & Temperature
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Increased impact
speed results in
higher strain
rates and
temperatures
(smaller
fragments).

Impacts at the
same speed result
in similar
temperature
distributions
regardless of
impactor size.




9 I Mesoscale Model Overview

\xl’o)s!

:.

Mesoscale Models:

Explore the effects of modeling individual
grains within a material

Vary grain properties such as:
o Strength and fracture properties
o Interface properties (slip)
> Void space

Note: Results will be shown for the 7 mm
diameter projectile (500 grains across)

Mesoscale Model

Recall: Goal is to assess effects of grain structure on strain
_— rate at failure and material temperature

Major Findings:

The range of results when modeling grains in a
consistency study encompassed bulk model
results and indicates acceptable agreement
between methods

Attempts to change material properties or
interfaces of grains had minor effects

> Shift toward lower strain rates, decrease or
smoothing of 2" peak

o Shift toward higher material temperatures

Interfaces between grains (by void in this
study) had major effects

o Dampening pressure wave through grains

> Overall shift to higher strain rate at failure and
material temperature

o Significant decrease in 15t strain rate peak
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Mesoscale Model

10 I Mesoscale Model Results

Consistency Study

- Compare a mesoscale grains case in which all grain types are composed of the
same material as the bulk model

- Each grain type is individually initialized in the code

o Differences between the averaged grain type results
and the bulk model are attributed to numerical effects

> Plots of pressure for each case are nearly identical except for |
imaging artifacts -

> Consistency study average used for comparisons
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass

Mesoscale Model

11 | Mesoscale Model Results: Comparison of Studies
(Strain Rate & Temperature)
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o A distribution of
spall strengths
(centered on
that of Al),
pfrac, resulted
in an increase of
low strain rates.

o A distribution of
yield strength
between grains
decreased low
strain rates but
did not affect
higher strain
rates.

o Allowing slip
(slide) between
grains had
inconclusive
results because
of grain
configuration
and/or algorithm




Fraction of Failed Mass

Cumulative Mass/Projectile Mass
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Mesoscale Model Results: Effect of Material Interfaces
(Strain Rate & Temperature)
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|

Interfaces
between grains
drastically
increase strain
rate (~3.7x) and
temperature
(~1.2x)

Interfaces
achieved here by
replacing a single
grain type void
(12.5% void is
high for real
metals)

However, study
could be
repeated with
other types of
interfaces
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Mesoscale Model

Mesoscale Model Results: A Closer Look at Interfaces

Grains (No Void) Grains with Void

T T

Imaging artifacts
/- h 1 «

Implication

o Simply adding grains does not change the pressure profile from the bulk case

o Interfaces between grains (here modeled as void space) drastically dampens the
shockwave, but results in locally higher pressures and temperatures that could affect
EO/IR signatures
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Summary
14 1 Summary

o Study compared the effects of modeling grain structure to the
traditional bulk material modeling in 2D CTH models, but could be
expanded to incorporate 3D models or different grain aspects

o Bulk models allowed for exploration of the underlying physics and
served as a baseline case

o Bimodal strain rate histograms result from projectile shape and size
o Areduction in projectile size or an increase in velocity results in higher

strain rates at failure, but only an increase in velocity significantly
affects material temperatures

o Mesoscale models explicitly simulated a material grain structure

o Changes in material properties within individual grains resulted in only
minor effects (primarily only an increase in low strain rates at failure)

o The introduction of interfaces between grains resulted in a substantial
shift to higher strain rates and temperatures

o Here void space was used, but other structures (inclusions, dislocations,
etc.) likely have similar effects

Interfaces between grains appear to control local, microscale strain rate at failure and
material temperature

o Higher strain rates produce smaller fragments (needed to compare with observed impacts)

o Higher temperatures result in higher EO/IR signatures
o Future studies could determine a correction factor that would account for interface effects in
bulk material simulations
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Backups
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16 I Background and Motivation

Grady-Kipp Fragment Size

Spall dominated by:

2/3

Fracture toughness

Kc dependent on T

1/2
Flow stress S = <£>
pE’
1/3
Liquid spall S = <ﬂ)
(above melt temp) pE’

Radiative Power Output

P = gAT*
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass
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|

We varied fracture
strength in a normal
distribution (based on
fracture strength in
various aluminum alloys)
within each grain type
material.

Fracture strength affects
the lowest strain rates
and may be due to
reduced transit time
across grains (rather than
the whole projectile).
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass

Y=(A+Beg,m)(1+Clng,)(1—T™)
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o &, is the equivalent

plastic strain

o &, is the plastic

strain rate

o T is the homologous

temperature,
(T' Troom ) (Tmel t” Troom)

o A,B,C, m and n are

all material const.

We varied A and B using
the same pfrac
distribution as in the
fracture study

Yield strength variations
resulted in less overall
strain and slightly lower
temperatures in the
projectile.
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass

Y=(A+Beg,m)(1+Clng,)(1—T™)
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0 400 300 200

We varied A and B using
the same pfrac
distribution as in the
fracture study

Yield strength variations
resulted a slight shift
toward higher strain rates
in the target, but no
change in temperature.
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Fraction of Failed Mass

Cumulative Mass/Projectile Mass
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We tested two slip
algorithms in CTH: SLIDE
and BLINT.

Neither algorithm had a
clear or dominant effect
on the resulting strain
rates or temperatures.
Potential causes are that
the grains boundaries
perfectly match each
other, so the materials
could not slip past each
other. Algorithm
subtleties may also have
affected results.
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Mesoscale Model

Mesoscale Model Results: A Closer Look at Interfaces

Bulk Grains (No Void) Grains with Void
6L 1.4 mm ] 6l ] 6l ]
 t=3.5e-7 s i ; 1
4L —4_ - 4_ =
2| {2} 1 2t :
I Imaging artifacts |
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Note: 1.4 mm projectile (100 grains) shown for clarity

Implication

o Simply adding grains does not change the pressure profile from the bulk case

o Interfaces between grains (here modeled as void space) drastically dampens the
shockwave, but results in locally higher temperatures that could affect EO/IR signatures
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