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3 Background and Motivation
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Electro-optical/infrared (E0/1R)
signatures from hypervelocity impacts
originate from small, hot debris

System-level hypervelocity impact
modeling relies on sub-grid fragmentation
theories to predict micro-debris

Little data exists to validate micro-debris
models, especially at higher strain rates

Goal of this study!

Use the CTH shock physics code to investigate differences in the predicted strain rate at
failure (as a proxy for fragment size) and material temperature when explicitly modeling
mesoscale grain structure versus using a traditional bulk approach to asses the potential
impact on EO/IR source and signature generation

r

pc 

)2/3
S = P = o-A

Grady-Kipp Fragment Size
(dominated by fracture toughness)
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4 CTH Input Development

2D CTH model

Aluminum sphere on aluminum plate, impacting nominally at 4 km/s

SESAME equation of state with Johnson-Cook strength, Johnson-Cook fracture,
and Grady-Kipp fragmentation

o Cell structure generated in MATLAB from 2D grain growth model for a unit cell
o Scaled the unit cell so that grains are -14 pm in diameter
o Eight grain types (eight different material initializations) in both projectile and target

o Future work would expand effort to 3D CTH models and the exploration of
grain aspect ratio
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5 I Bulk (Isotropic) Model Overview

mtm Recall: Goal is to assess effects of grain structure on strain
rate at failure and material temperature

Bulk (Isotropic) Model:

Standard simulation method
No grains simulated

Baseline for comparison with mesoscale
models

Explore underlying physics through
tests of:

Resolution

Projectile Size

Impact Speed

Assess effects primarily in the projectile
(most interesting results result in finite-
thickness objects)

Major Findings:

Increasing resolution increases strain rate, but
convergence is observed in temperature

3.5 pm resolution was chosen for remainder of sims

Strain rate histograms have a bimodal
distribution

The onset of the first peak and the separation
between peaks is dependent on projectile size

1st peak appears to be driven by transit time across
object (i.e, by a length scale, in this case projectile
diameter)

2nd peak appears to be related to sound speed

Reducing projectile size and/or increasing
velocity, shifts to higher strain rates

For a given velocity, peak temperatures and
temperature distributions are similar between
all projectile sizes
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6 I Bulk Model Results: Comparisons of Strain Rate at Failure
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bimodal
distribution of
strain rates.
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7 I Bulk Model Results: Comparisons of Material Temperature
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Cube (face-on)
projectiles
produce higher
temperatures
and therefore
higher expected
EO/IR signatures.

Finite targets
(more realistic
targets) may
produce strain
rates and
temperatures
that are similar
to cube
projectiles.
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8 Bulk Model Results: impact Velocity on Strain Rate &Temperature
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higher strain
rates and
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(smaller
fragments).

Impacts at the
same speed result
in similar
temperature
distributions
regardless of
impactor size.
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9 Mesoscale Model Overview

Recall: Goal is to assess effects of grain structure on strain
rate at failure and material temperature

Mesoscale Models:

Explore the effects of modeling individual
grains within a material

Vary grain properties such as:
Strength and fracture properties

Interface properties (slip)

Void space

Note: Results will be shown for the 7 mm
diameter projectile (500 grains across)

Major Pndings:

The range of results when modeling grains in a
consistency study encompassed bulk model
results and indicates acceptable agreement
between methods

Attempts to change material properties or
interfaces of grains had minor effects

Shift toward lower strain rates, decrease or
smoothing of 2nd peak

Shift toward higher material temperatures

Interfaces between grains (by void in this
study) had major effects

Dampening pressure wave through grains

Overall shift to higher strain rate at failure and
material temperature

Significant decrease in 1st strain rate peak
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10 Mesoscale Model Results

Consistency Study
Compare a mesoscale grains case in which all grain types are composed of the
same material as the bulk model
Each grain type is individually initialized in the code

Differences between the averaged grain type results
and the bulk model are attributed to numerical effects
Plots of pressure for each case are nearly identical except for
imaging artifacts

Consistency study average used for comparisons
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Model Results: Comparison of ud es

t

11 Mesoscale

si 

(Strain Rate &Temperature)
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( A distribution of
spall strengths
(centered on
that of Al),

, resulted
in an increase of
low strain rates.

o A distribution of
yield strength
between grains
decreased low
strain rates but
did not affect
higher strain
rates.

Allowing slip
) between

grains had
inconclusive
results because
of grain
configuration
and/or algorithm
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Mesoscale Model Results: Effect of Material Interfaces
(Strain Rate &Temperature)
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drastically
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However, study
could be
repeated with
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13 Mesoscale Model Results: A Closer Look at Interfaces

Bulk
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o Simply adding grains does not change the pressure profile from the bulk case
o Interfaces between grains (here modeled as void space) drastically dampens the

shockwave, but results in locally higher pressures and temperatures that could affect
EO/IR signatures
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14 Summary

Study compared the effects of modeling grain structure to the
traditional bulk material modeling in 2D CTH models, but could be
expanded to incorporate 3D models or different grain aspects

o Bulk model. allowed for exploration of the underlying physics and
served as a baseline case

Bimodal strain rate histograms result from projectile shape and size
A reduction in projectile size or an increase in velocity results in higher
strain rates at failure, but only an increase in velocity significantly
affects material temperatures

o Mesoscate moueis explicitly simulated a material grain structure
c Changes in material properties within individual grains resulted in only

minor effects (primarily only an increase in low strain rates at failure)
The introduction of interfaces between grains resulted in a substantial
shift to higher strain rates and temperatures
Here void space was used, but other structures (inclusions, dislocations,
etc.) likely have similar effects

Interfaces between grains appear to control local, microscale strain rate at failure and
material temperature

o Higher strain rates produce smaller fragments (needed to compare with observed impacts)
o Higher temperatures result in higher EO/IR signatures
o Future studies could determine a correction factor that would account for interface effects in

bulk material simulations
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16 I Background and Motivation

Grady-Kipp Fragment Size 

Spall dominated by:

Fracture toughness
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Kc dependent on T

Flow stress
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1 7 Fracture Study

Fr
ac
ti
on
 o
f
 F
ai
le
d 
M
a
s
s
 

C
u
m
u
l
a
t
i
v
e
 M
as

s/
Pr

oj
ec

ti
le

 M
a
s
s
 

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.25

0.2

0.15

0.1

0.05

0
le +09 le+08 le +07 le +06 100000 10000

0

7 mm dia projectile

grains consistency (avg)
pfrac distribution (avg)  

10000 100000 le+06 le+07 le+08 1e+09

GK Strain Rate at Failure (1/s)

7 mm dia projectile

grains consistency (total)
pfrac distribution (total)

GK Strain Rate at Failure (1/s)

Fr
ac
ti
on
 o
f
 T
ot

al
 M
a
s
s
 

C
u
m
u
l
a
t
i
v
e
 M
as

s/
Pr

oj
ec

ti
le

 M
a
s
s
 

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

7 mm dia projectile

gralns consisterky (a‘ig)
pfrac distribution (avg)

200 300 400 500 600 700 800 900 1000 1100 1200

Temperature (K)

1  

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0  
1200

7 mm dia projectile

grains Consiseency (total)
pfrac distribution (total)

1100 1000 900 800 700 600 500 400 300 200

Temperature (K)

We varied fracture
strength in a normal
distribution (based on
fracture strength in
various aluminum alloys)
within each grain type
material.

Fracture strength affects
the lowest strain rates
and may be due to
reduced transit time
across grains (rather than
the whole projectile).
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18 Yield Study (Projectile)
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o Ep is the equivalent
plastic strain

is the plastic
strain rate

o T is the homologous
temperature,

(T-Troom )(Tme(t-Troom)
o A, B, C, m, and n are

all material const.

We varied A and B using
the same pfrac
distribution as in the
fracture study

Yield strength variations
resulted in less overall
strain and slightly lower
temperatures in the
projectile.
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19 Yield Study (Target)
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o Ep is the equivalent
plastic strain

is the plastic
strain rate

o T is the homologous
temperature,

(T-Troom )(Tme(t-Troom)
o A, B, C, m, and n are

all material const.

We varied A and B using
the same pfrac
distribution as in the
fracture study

Yield strength variations
resulted a slight shift
toward higher strain rates
in the target, but no
change in temperature.
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20  Slip Study
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We tested two slip
algorithms in CTH: SLIDE
and BLINT.

Neither algorithm had a
clear or dominant effect
on the resulting strain
rates or temperatures.
Potential causes are that
the grains boundaries
perfectly match each
other, so the materials
could not slip past each
other. Algorithm
subtleties may also have
affected results.
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21 Mesoscale Model Results: A Closer Look at Interfaces
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Implication 
o Simply adding grains does not change the pressure profile from the bulk case
o Interfaces between grains (here modeled as void space) drastically dampens the

shockwave, but results in locally higher temperatures that could affect EO/IR signatures
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