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2 I Volatile Chemicals Exist In Everyday Life

Volatile chemicals remain a significant threat
o Military personnel

O Industrial processes

O Border/Port security

o Possible target locations for terrorism

A highly selective and ultra-sensitive sensor is desperately needed
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4 I Sensing with Nanohole Arrays
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*Artificially structured/highly tunable

Extremely sensitive to changes in the sensing volume •Selectivity requires complex surface functionalization

•Consistent and reproduceable results *Metal/dielectric interface may not support surface
functionalization

•Scalable to wafer level production

Extraordinary Optical
Transmission (ROT)
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•Smaller molecules

Is low-limit detection of small molecules feasible?

(gases) are challenging to detect



5 Zirconium-based Metal Organic Frameworks (MOFs)

Ui0-66

Crystalline coordination polymer:
o Micro/Nanoscale porosity (tunable)

o Extremely large surface area (1180-1240 m2/g)

O Demonstrated sensitivity to chemical weapon agent
(CWA)-simulant dimethyl methylphosphonate
(DMMP) *

*Stassen et al. Chemical Science, 2016, 7 5827

Would structural changes in MOFs be observable as a
refractive index shift by a plasmonic transducer?

Can this be used as a new sensor architecture?

•



6  Ui0-66 Synthetic Methods

There are many variations of the basic synthesis of Ui0-66 in the literature

Important parameters include reagent concentration vs solvent, use/stoichiometry of a monoacid capping agent, water
concentration, and, for thin film growth, heating method (oven vs. microwave)

o We have explored four synthetic methods (Taddei et al., Miyamoto et al., Katz et al. and Fei et al.)

o The most successful methods for our purposes have been those reported by Taddei et al. and Miyamoto et al.

Reagent/Condition
Miyamoto
Method

Taddei
Method

mol/mol ratio vs ZrCI4

ZrCI4 1 1

1,4-benzenedicarboxylic acid 1 1

acetic acid 80 30

water 0.2 6

DMF 250 110

heating method oven microwave

duration/temp 24 hrs/80°C 30 min/120°C

HO

OH

o

1,4-benzenedicarboxylic acid

(terephthalic acid)

Taddei et al. Dalton Trans., 2015, 44, 14019 Fei et al. Chem Comm, 2015, 51, 66
Miyamoto et al. CrystEngComm, 2015, 17, 3422 Katz et al. Chem Comm, 2013, 49, 9449



7 I MOFs on Gold

H3=6175 nm
H1 =6329 nm

100 nm
EHT = 5.00 kV WD = 4.9 mm Signal A = inLens Width = 1.581 pm

First demonstration of solvothermal growth
of Ui0-66 on Au surface

Uniform film thickness of 60-70 nm

Intergrown base layer very promising!

Crystalline overgrowth observed:

Mitigated with sonication

Does not seem to interfere with sensing
modalities

EHT = 5.00 kV WD = 3.2 mm Signal A = InLens Width = 2.858 pm



8 I Thicker Ui0-66 Films & XRD Confirmation

114 nm EHT = 5.00 kV WD = 6.0 mm Signal A = inLens Width = 2.8581.1111

Thicker films of up to 200 nm show
stress fracturing

Grazing incidence X-ray diffraction
confirm strong <111> alignment as
expected of Ui0-66
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How well will thin film MOFs
integrate with NHA structures? 0
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9 MOF Integration with NHAs
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Obvious MOF thin film growth

Inset — Crystallites grown within nanoholes

What can we learn about thin film Ui0-66 from EOT spectra?



10 I Experimental Setup

Excitation II Collection



11 N HA Characterization
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1 2 MOF Film Characterization with Surface Plasmon Polaritons
Alpha Sample
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Film thickness variable from
array to array and sample to
sample

Alpha, Bravo, and Charlie samples
were processed under the same
MOF growth conditions

Alpha film growth process is
promising and warrants further
investigation

General agreement with expected
spectral shape



13 Methods of Detecting DMMP with MOFs

MOF Functionalized NHA
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Both methods increase the effective refractive index
within the sensing volume of the NHA. This change
is observed by tracking changes to the EOT
spectrum
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14 DMMP Results
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1 5 I Future Work

This work has confirmed DNIMP can be detected with a MOF-
functionalized NHA. However, this has been a qualitative confirmation.
Our future work will focus on quantifying this sensing architecture:

Optimize MOF film synthetic methods (thickness, porosity,
uniformity)

Investigate performance of current synthetic methods to atomic layer
deposition methods

Integrate a gas flow cell to control analyte/MOF interaction

Flow varying concentrations of DMNIP to fully characterize sensor
responsivity

Flow additional gases with DMMP to determine selectivity of MOF
films



I16 Questions?



17 I Backup
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