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Volatile Chemicals Exist In Everyday Life

Volatile chemicals remain a significant threat
> Military personnel

° Industrial processes
> Border/Port security

° Possible target locations for terrorism

A highly selective and ultra-sensitive sensor is desperately needed
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4 I Sensing with Nanohole Arrays Extraordinary Optical

Transmission (EOT)
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* Artificially structured/highly tunable *Smaller molecules (gases) are challenging to detect

*Extremely sensitive to changes in the sensing volume  *Selectivity requires complex surface functionalization

*Consistent and reproduceable results *Metal/dielectric interface may not support surface

, functionalization
*Scalable to wafer level production

Is low-limit detection of small molecules feasible?




5 I Zirconium-based Metal Organic Frameworks (MOFs)

Crystalline coordination polymer: Would structural changes in MOFs be observable as a
° Micro/Nanoscale porosity (tunable) refractive index shift by a plasmonic transducer?

* Extremely large surface area (1180-1240 m?/g) Can this be used as a new sensor architecture?

> Demonstrated sensitivity to chemical weapon agent
(CWA)-simulant dimethyl methylphosphonate
(DMMP)*

*Stassen et al. Chemical Science, 2016, 7 5827




6 | UiO-66 Synthetic Methods

° There are many variations of the basic synthesis of UiO-66 in the literature

° Important parameters include reagent concentration vs solvent, use/stoichiometry of a monoacid capping agent, water
concentration, and, for thin film growth, heating method (oven vs. microwave)

> We have explored four synthetic methods (Taddei et al., Miyamoto et al., Katz et al. and Fei et al.)

° The most successful methods for our purposes have been those reported by Taddei et al. and Miyamoto et al.

Reagent/Condition M“inyeatr:;o I;;:fﬁj;
mol/mol ratio vs ZrCl, o
ZrCl, 1 1
1,4-benzenedicarboxylic acid 1 1 HO
acetic acid 80 30 OH
water 0.2 6
DMF 250 110 °
1,4-benzenedicarboxylic acid
heating method oven microwave (terephthalic acid)
duration/temp 24 hrs/80°C 30 min/120°C

Taddei et al. Dalton Trans., 2015, 44, 14019 Fei et al. Chem Comm, 2015, 51, 66
Miyamoto et al. CrystEngComm, 2015, 17, 3422 Katz et al. Chem Comm, 2013, 49, 9449



7 I MOFs on Gold

Crystalline overgrowth observed:

° Mitigated with sonication

> Does not seem to interfere with sensing
modalities

100
| = EHT= 500kV WD = 49mm Signal A=lInLens  Width = 1.581 pm

First demonstration of solvothermal growth
of UiO-66 on Au surface

Uniform film thickness of 60-70 nm

Intergrown base layer very promising!

EHT = 5.00 kV WD = 3.2mm Signal A = InLens Width = 2.858 ym
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Thicker UiO-66 Films & XRD Confirmation

100 nm

EHT = 5.00 kv WD = 6.0 mm Signal A = InLens Width = 2.858 um

Thicker films of up to 200 nm show
stress fracturing

Grazing incidence X-ray diffraction
confirm strong <111> alignment as
expected of UiO-66

How well will thin film MOFs
integrate with NHA structures?
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9 I MOF Integration with NHAs

MOF
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Obvious MOF thin film growth
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Inset — Crystallites grown within nanoholes

What can we learn about thin film UiO-66 from EOT spectra?




10 | Experimental Setup
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11 I NHA Characterization
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MOF Film Characterization with Surface Plasmon Polaritons
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Film thickness variable from
array to array and sample to
sample

Alpha, Bravo, and Charlie samples
were processed under the same

MOF growth conditions

Alpha film growth process 1s
promising and warrants further
investigation

General agreement with expected
spectral shape



13 I Methods of Detecting DMMP with MOFs

MOF Functionalized NHA
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Both methods increase the effective refractive index
within the sensing volume of the NHA. This change
is observed by tracking changes to the EOT
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14 I DMMP Results

DMMP Induced Framework Collapse
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Future Work

This work has confirmed DMMP can be detected with a MOF-
functionalized NHA. However, this has been a qualitative confirmation.
Our future work will focus on quantifying this sensing architecture:

> Optimize MOF tilm synthetic methods (thickness, porosity,
uniformity)

° Investigate performance of current synthetic methods to atomic layer
deposition methods

> Integrate a gas flow cell to control analyte/ MOF interaction

° Flow varying concentrations of DMMP to fully characterize sensor
responsivity

° Flow additional gases with DMMP to determine selectivity of MOF
films



16 I Questions?
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