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Summary: Z data can benchmark models of emission from
> | photoionized accretion-powered plasmas

Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra

- These models are largely untested in the laboratory
- Need benchmark quality data

= A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z

— the column density is adjustable, testing radiation transport

= Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

= Presently, models do not reproduce neither relative or absolute emission

=  First terrestrial RRC for a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

These results raise questions about the suitability of models used to
interpret astrophysical observations

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



Active Galactic Nuclei and X-ray Binaries are revealed
; | through the emission from their accretion disk
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Challenges:

Line identification

Blended spectra from multiple elements
Spatial and temporal integration

Limited spectral resolution
Limited signal-to-noise

Liedahl, X-ray Diagnostics of Astrophysical Plasmas (2005), Ross & Fabian, Nature (2009)
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X-ray spectra are used to access a wide variety of the
+ | astrophysical object parameters
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Yet, largely untested physics models are used to predict the observations

Liedahl, X-ray Diagnostics of Astrophysical Plasmas (2005), Ross & Fabian, Nature (2009)
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Benchmark requirements to emission experiment
5

Experimental requirements for model benchmarking:

* large volumes for uniformity

* |ong duration x-ray drive for steady state

 demonstrated reproducibility

* independent diagnosis of plasma conditions and x-ray driving radiation
* demonstrated photoionization regime (CSD vs T,, £> 1 erg.cm/s)

Specifically for emission:
* Large column density for high S/N
Since column = density x length , density < 101° e"/cc = large ~1cm plasma size

Experiments on the Z Facility can meet these criteria.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



All required inputs are obtained on a single Z shot, confirm |
the plasma is photoionized and at relevant regime i

5 cm Z-pinch I
< Expanded Si foil /‘7 Power, Energy

Initially 800A with |

1000A CH tamping

\ 4

: return current canister

' s

P~220TW
E~1.6MJ

50000x
expansion

I§ | absorption
Sy

emission ' =
Ry § Zpinch B Saseareg Ll

Emission spectroscopy

L A

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)

Absorption spectroscopy |
Imaging |



All required inputs are obtained on a single Z shot, confirm |

; | the plasma is photoionized and at relevant regime
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The radiation driving each sample is inferred from a combination of
s | x-ray diagnostics

140 1) Samples are exposed to multiple radiation source
contributions

1201 X-ray power

100 - 2) X-ray emission from the pinch and the surrounding

apparatus is measured with absolute power diagnostics
and a gated imager with three photon energies
60 [ (hv=277 eV, hv=528 eV and hv>1keV)

80

Power (TW)

40
3) A view factor code is used to infer the spectral irradiance

20f at the sample
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lon density is measured from the sample areal mass and sample
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Optical depth

The temperature has been obtained from Li-like absorption from |

low-lying state assuming partial LTE
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The ratio of lines from ground
state and low lying states is a
temperature diagnostic

2> T,=33+7eV

10.3 with radiation
5.3 without radiation

The plasma is over-ionized compared to collisional plasma at the same temperature




The temperature inferred relies on the partial LTE assumption, G \_I
oscillator strengths and energy level separation (~28eV) LI
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The emission data shows contributions from different charge states
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Simultaneous line observation contradicts an assumption used to interpret black hole spectra*®

*Ross and Fabian, MNRAS, 278 (1996), Loisel et al., PRL 119 (2017)




The emission is not reproduced by any model even with conditions

13 I adjusted to match absorption spectra
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Spectr3D: Prism Computational Software



Comparison with a Monte Carlo radiation transport code exhibits
12 | improved agreement
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The effect of the different atomic physics data must also be evaluated

MC: Monte Carlo radiation transport code, D. Liedahl



Emission spectra are also measured at very high spectral resolution
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We can study very detailed level structure and more precise radiation
transport effects on lines that have variable optical depth.




| High-n, n<14, He-like transitions with merging into the continuum |
first obtained in a laboratory photoionized plasma

l Silicon closer to the x-ray source
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‘ Silicon closer to the x-ray source
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The high-n lines are not systematically decreasing with principal
quantum number

Initial upper states can be

populated either by:

* recombination following
photoionization

* or photoexcitation

Also line intensity is affected
by radiation transport.

— Test predominance of photoexcitation versus photoionization in populating He-like states
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The radiative recombination continuum (RRC) is considered the most
reliable temperature diagnostics for accretion-powered objects
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RRC = emission following the capture of
electron by plasma ions above
recombination threshold energy

Requirements to observe RRC:

low temperature T.<</, (ionization
potential)

2. Overionized recombining plasma

3. High sensitivity instrument (overcome
x-ray drive radiation)

Spectral resolution better than T,

5. Little contamination from line and/or
NP other continuous emission
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- RRC visibility with highly charged ions supports the photoionized nature of the accreted matter
- Untested in the laboratory in a well-characterized photoionized plasma.

[1] Liedahl, Paerels et al. (1996), [2] Schulz et al., Ap. J. Letters 564 (2002). [3] Watanabe et al., Ap. J. 651 (2006)
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We recorded first RRC (~10-2 Z-pinch energy) in a photoionized

plasma in a terrestrial laboratory
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= RRC visibility with highly charged ions supports the photoionized nature of the accreted matter
- Untested in the laboratory in a well-characterized photoionized plasma.

[1] Liedahl, Paerels et al. (1996), [2] Schulz et al., Ap. J. Letters 564 (2002). [3] Watanabe et al., Ap. J. 651 (2006)



optical depth

Preliminary: temperature inferred from line absorption agrees with

the RRC slope
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Nine shot absorption average

0.8

o
o

Optical depth
o
K

Li-like opt. depth

Si on can — 9 shots average (03/2019)

Si on can — 9 shots average mul by 1.47

using IDL com procedure
Si at 44mm (PRL)

6.68 6.70



The broadband spectrum measurements include all He-like lines I
(He o to He-14)
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How much of the predictive difficulty is unique to our experiments
23 | and how does it impact astrophysical objects?

Possible needed improvements in understanding the experiment

* Could electron density be higher than the value measured with radiography?

Transient kinetics appear relatively unimportant, but further evaluation is needed

The bulk of x-ray drive in 0.1 -1keV is measured to +20%, but accuracy in >1.7keV photon spectrum needs
more evaluation.

Accounting for geometrical dilution of drive requires attention

Velocity impact on line optical depths appears small, but further investigation needed

Scrutiny is required for the models
* Accuracy of the recombination rates? dielectronic recombination rates?
* |s the atomic data complete?
* Are approximations in the radiation transport valid?
e.g. escape factors, escape geometry, self-consistency...

Scrutiny for the 2018-2020 Z fundamental science proposal




Summary: Z data can benchmark models of emission from
24 | photoionized accretion-powered plasmas

Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra

- These models are largely untested in the laboratory
- Need benchmark quality data

= A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z

— the column density is adjustable, testing radiation transport

= Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

= Presently, models do not reproduce neither relative or absolute emission

=  First terrestrial RRC for a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

These results raise questions about the suitability of models used to
interpret astrophysical observations

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



Extra slides



Measured relative absorption from different ion stages tests model
26 I ionization predictions
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Agreement can be obtained by adjusting parameters that increase

recombination
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I Results and puzzles are documented
28 week sading Absorgtlon

PRL 119, 075001 (2017) PHYSICAL REVIEW LETTERS 18 AUGUST 2017

Benchmark Experiment for Photoionized Plasma Emission
from Accretion-Powered X-Ray Sources

G.P Loisel,’ I.E. Bailey,' D. A. Liedahl,” C. J. Fontes,” T. R. Kallman,® T. Nagayama,'
_S.B. Hansen,' G. A. Rochan,' R. C. Mancini,” and R. W. Lee®
The interpretation of x-ray spectra emerging from x-ray binaries and active galactic nuclei accreted plasmas
relies on complex physical models for radiaion generation and transport in photoionized plasmas. These
models have not been sufficiently experimentally validated. We have developed a highly reproducible
benchmark experiment to study spectrum formation from a photoionized silicon plasma in a regime
comparable to astrophysical plasmas. Ionization predictions are higher than infemed from measured absorption
spectra. Self-emission measured at adjustable column densities tests radiation transport effects, demonstrating
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that the resonant Auger destruction assumption used to interpret black hole accretion spectra is inaccurate. 6. 65 6.70 6.75 6.80 6.85 6.90‘
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