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Fuel Dissolution Process Mode

• Complex set of processes

• Radiolysis

• Oxidation of H2 via noble metal particle (NMP)
catalyst

• 1-D reactive transport through alteration layer

• Growth of the alteration layer

• Diffusion of reactants and products through the
alteration layer

• Expensive in a repository PA calculation

• Slow, iterative solution is required for each call to
the process model

• —1 billion calls per probabilistic PA simulation

(Thousands of waste packages) x (Thousands of time
steps) x (Hundreds of realizations)

• => Process model much too slow to be directly
used in a repository PA calculation

(Figure adapted from Jerden et al. 2017)
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Surrogate Models

• Can capture the important
effects of high-fidelity process
models

• Can run orders of magnitude
faster than process models

• Can be used to
• Identify important

parameters in the

process model

• Track uncertainty
introduced to the PA

model by the surrogate
model
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Objective of Study
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■ Develop two surrogate models of the Fuel Matrix Degradation
(FMD) process model for use by PFLOTRAN in GDSA
Framework

• One continuous function surrogate model

Parametric surrogate model: polynomial linear regression

• One lookup table surrogate model

Non-parametric surrogate model: k-Nearest Neighbors regression (kNNR)

■ Assess error and simulation run time of these models relative
to the coupled FMD process model
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Fuel Matrix Degradation (FMD) Model

• Domain

• 1D, fuel surface to bulk water

• Processes
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• Radiolysis, alteration layer growth, diffusion of reactants through the
alteration layer, temperature, and interfacial corrosion potential

• FMD process model coded in Matlab

• Inputs/outputs each time step

Inputs Outputs

• Initial concentration profiles across 1D corrosion/water
layer (UO2(s), UO3(s), U04(s), H202, U022+, UC032-,
UO2, C032-, 02, Fe2+, and H2)

• Initial corrosion layer thickness
• Dose rate at fuel surface (= f (time, burnup))
• Temperature
• Time, time step length
• Environmental concentrations (C032-, 02, Fe2+, and H2)

• Final concentration
profiles across 1D
corrosion/water layer

• Final corrosion layer
thickness

• Fuel dissolution rate
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Coupled FMD Model

• Coupled to PFLOTRAN in

2015

• Recoded in Fortran

• Tested on a 2D layout

• 52 breached spent fuel

waste packages in a steady
state flow field

• 100 time steps

• 45-minute simulation

• 67% of computational time

due to FMD process model

• Too expensive for PA

Time: 1.00000E+02 years
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Polynomial Surrogate

• Two polynomial surrogates developed

• Linear regression model for input parameters xi
f (x) -,-: co + ET=.1 ci xi

• Second order polynomial regression (aka quadratic regression model)

f (x) -,-: co + ri71_, ci xi + Erin=lErt,i cij xixj

• Coefficients (co, ci, cif)

• Determined by minimizing sum-of-squared error (SSE) between the
surrogate model and the actual data yi

• SSE = ri',1( f (xi) — Yi)2

• Linear solve for linear regression model
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Surrogate Training/Testing Data
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• Training and testing data

• 2,800 Matlab FMD model simulations

Each consisting of 101 points in time, logarithmically spaced from 0 to 105 yr

For polynomial surrogate, half used for training, the other half for testing

• Inputs (not temperature) and outputs log-transformed prior to regressions

• Latin hypercube sampling (LHS) of input parameters

• Six-dimensional space

Parameter Distribution Min. Max.

Init. Temp. (C) Uniform 298 373

Burnup (Gwd/MTU) Uniform 20 90

Env. C032- (mol/m3) Log-uniform 10-6 10°

Env. 02 (mol/m3) Log-uniform 1 0-6 1 0-1

Env. Fe2+ (mol/m3) Log-uniform 1 0-6 1 0-5

Env. H2 (mol/m3) Log-uniform 1 0-6 1 0-1
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Two Polynomial Surrogate Models

■ Input parameters for feature sets A and B

Feature Set A

Initial (previous) concentrations of U022+, UO2 (CO3)22-,
UO2, and H202 at the bulk water boundary cell

Initial (previous) corrosion layer thickness

Dose rate at fuel surface

Temperature

Time

X

X

X

X
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B

X

X

Environmental concentrations of C032-, 02, Fe2+, and H2 X X

Initial (previous) UO2 surface flux (dissolution rate) X
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Error Analysis

• Relative pointwise absolute error (RPWAE)

• RPWAE = 
lYpred—Ytruei = ii Ypred 1

Ytrue Ytrue
(at each data point)

• This error is averaged to obtain the mean RPWAE (M-RPWAE)

metric for each test run

F-Set P-Order Terms R2 M-RPWAE

A

A

B

B

Linear 12 0.371 1.07

Quadratic 91 0.747 0.286

Linear 8 0.997 0.0515

Quadratic 45 0.997 0.0457
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Feature Set A Polynomial Surrogate

Linear

Feature Set13 Test Data and Predictions (20011400 displayed)
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Quadratic

Feature Set13 Test Data and Predictions (20011400 displayed)
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Feature Set B

Linear

Polynomial Surrogate
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Polynomial Surrogate Assessment

• Polynomial surrogate model

coupled to PFLOTRAN

• Tested on 2D example

• Fast (see table)

• Relative accuracy will be evaluated
after coupled process model is
updated to latest process model

1

Time: 1.00000E+02 years

Run Time (s)
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kNNR Lookup Surrogate

• k Nearest Neighbors regression (kNNR) surrogate model

• Supervised, non-parametric, machine-learning method

• Tabulates data points for making predictions on the fly

• k is the number of nearest data points used in a prediction

• Distance from the interrogation point depends on the metric, e.g.
1

Minkowski metric: (EC,1_11xi — yi IP) To , with p 1

— For the popular Euclidean metric, p = 2

• An inverse of the distance to each neighbor may be used to determine
how influential the neighbor is in calculating the weighted average

• Tabulations may be of various forms

E.g., a table, K-D Tree, or Ball Tree

• No need for global smoothness — kNNR acts locally

• Requires sufficiently dense tabulation of data in sampled areas
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kNNR Surrogate Setup

• Same 2,800 simulations used for training and testing

• 10% used for testing
• Remainder used for training in different training set sizes to examine

the effects of training set size

• Manhattan distance metric

• Same as Minkowski metric for p = 1

• Better suited for higher-dimensional domain space

• Ball Tree tabulation (for same reason)

• Distance-weighted method used

Sandia
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kNNR Surrogate Model

■ Input parameters

Feature Set

H2 concentrations at the leftmost and rightmost endpoints of the spatial
mesh inside the FMD model

H202 concentrations at the leftmost and rightmost endpoints of the
spatial mesh

Dose rate at the leftmost endpoint of the spatial mesh
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kNNR Surrogate Model

• 7 nearest neighbors optimal

• Decrease in error with increasing training set size

Model Selection Plot for 2646 Training Runs
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kNNR Surrogate Model

Representative Predictions for 2646 Training Runs
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kNNR Surrogate Model
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• Errors can increase above 100% when the average Manhattan
distance exceeds 0.4 to 0.6 (denoted by black hashes)

• Results imply that

• A higher density of
training data is needed
(limited effect here),

• A distance cutoff is
needed for nearest
neighbors, and/or

• Additional predictors
may need to be added
to the table (likely)

RPWAE vs. Distance to NN fo 2646 Training Runs
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Run Time kNNR Surrogate

• kNNR surrogate model not yet coupled to PFLOTRAN

• The standalone kNNR model appears to be faster than the
coupled polynomia• l surrogate model

• However, can't compare speeds very well until coupled

Accuracy Retention through Adaptive Tabulation
to'

10-
0.0

J Original Table, 2.46M points

IM Adaptive Table, 1.18M points

M-RPWAE for Adaptive Table

  M-RPWAE for Original Table

ILL NI ill 1 
0.5 1.0 1.5

Sandia
National
Laboratories

• Test

• 5,000 lookups (done 30 times)

• Original table (2.46M points)

• 4.14 seconds

• Adaptive table (1.18M points)

• 1.79 seconds

• Table thinned by 52% by

requiring minimum distance of

0.05 (in the Manhattan norm)

• Equivalent M-RPWAE
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Conclusions

■ Polynomial surrogate

• Linear and quadratic fits produce similar accuracy

• Coupled to PFLOTRAN

• Very fast — increases speed of 2D example by a factor nearly 200

• Work ongoing to reduce error for a feature input set that excludes

fuel dissolution flux from previous time step

■ kNNR surrogate

• 7 nearest neighbors optimum

• Fast and accurate (M-RPWAE < 0.1)

• Not yet coupled to PFLOTRAN

• Work ongoing to reduce error, reduce run time, and couple to

PFLOTRAN
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