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Introduction and Motivation
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• A variety of sources can produce heat flux well beyond those
typical of fire environments:
• Directed Energy Weapons

• Nuclear Weapons

• Explosives

• Propellants

• At extreme (-1 MW/m2) heat flux, the incident energy
dominates the surface energy balance
• Radiation (-100 kW/m2) and convection (-10 kW/m2) are relatively

small even when the surface reaches ignition temperatures (z. 600 °C)

• Objective: Improve experimental characterization through
quantitative image analysis and surface topology of samples
after exposure to intense thermal irradiation.
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Response to Extreme Irradiation

• Under extreme irradiation (-0.1- 1 MW/m2), a material can:

• Pyrolyze strongly as the surface chars and/or recedes.

The material chemically decomposes, producing combustible gases.

• Ignite by a variety of mechanisms:

Transient Flaming

Sustained Flaming

Sustained Smoldering

• As well as other responses:

Melt, spall, char, exfoliate, etc.
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Example: Polystyrene
Filtered, Side

polystyrene l 3,260 kJ/mA2 l fps: 60 l elapsed time: —0.250 sec

Unfiltered, Front Unfiltered, Side Filtered, Front
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Material: 
High-Impact Polystyrene
3.2 mm thick

Exposure:
3.26 MJ/m2

Ignition Data: 
Sustained Flaming
lgn. time: 0.85 s
Pyr. time: 0.38 s
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Programmatic Objectives

• This study is part of a wider program, focusing on pyrolysis
and ignition at extreme radiative heat flux.
• Experimental data at small and large scale

Solar Furnace (z10 cm spot)

Solar Tower (z1 m spot)

• Simple ignition models (e.g., empirical correlations) that can predict
material response to a given environment.

Sandia
National
Laboratories

• High-fidelity computational models that capture the complex physics
and accurately predict pyrolysis and ignition.

• These advancements will produce ignition models spanning a
wide range of environments and materials.
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Literature Review

■ Most data at extreme heat flux from three sources:
■ Nuclear Testing

Real environment, large scale

Poorly Characterized

■ Glasstone

Expansive reference table

Citations not listed, qualitative information

■ Martin

Rigorously characterized

Narrow focus (black alpha-cellulose papers)

■ Previous research focuses on categorical data (ignition).
■ Supports underlying objective: simple empirical ignition models.

■ Categorical data is inferior for high-fidelity computational models!
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Sample Analysis in Prev. Literature
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Glasstone & Dolan:
• Minimal sample

characterization
• Broad range of

materials.
• Qualitative response
• Only ign. threshold is

quantitative.

APPROXIMATE RADIANT EXPOSURES FOR IGNITION OF FABRICS FOR LOW AIR
BURSTS

Weight Effect

Radiant Exposure*

(callcm2)

35 1.4 20
Material (oz/yd2) Color on Material kilotons megatons megatons

CLOTHING FABRICS

Cotton 8 White Ignites 32 48 85
Khaki Tears on flexing 17 27 34
Khaki Ignites 20 30 39
Olive Tears on flexing 9 14 21
Olive Ignites 14 19 /1

Dark blue Tears on flexing 11 14 17
Dark blue Ignites 14 19 21

Cotton corduroy 8 Brown Ignites 11 16 22
Cotton denim, new 10 Blue Ignites 12 27 44 

Martin et. al.:
• Well-characterized

samples.
• Mostly black cellulose.
• Categorical response.
• Only ign. threshold is

quantitative.

Ignitice Data for 0.7 g cm-3 Nomans1 Density Material

Thielmese sni
Physical Prope,ties Effect

Peak Time to
Irradiance Ptak (ts.d)

Man4ract:i No. 4096
L mil

.. 0.0795 ca
= 0.69 g

c = 0.35 cal aecl el
K 2.2 x 19-4

cal cis' dee1 sec-1

Simple data is appropriate for simple
models. Need better data for high-fidelity

Flame

Transient
Flame

Glow

cal an-2 sec-1 sec

21.9
18.3
16.4
15.1
14.6
13.1
10.4
10.2

15.1
14,6
13.7

Radiant
Exposure

afe2

0.30 13.5
0.35 13.4
0.38 12.9
0.40 12.4
0. y3 11.4
0.41 11.2
0.83(t0.02) 17.9
o.85 18.0

0.29 9.1
0.26 7.9
0.40 11.4

7,1 i 45 21.3 1 0

models •as-•hase dominant ignition .
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Solar Furnace

• Heliostat tracks sun

• Parabolic dish focuses light

• Attenuator controls temporal flux profile

• 3-axis table positions sample/instrumentation

• Generates heat flux of up to 6 MW/m2 on a .=--8 cm spot
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Solar Furnace Environment

• Temporal Profile

• Ramp up/down.

• Limited by attenuator speed.
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• Spatial Profile

• Characterized in previous paper.
• Ho, C. K. et.al., Proc. Int. Conf. on Energy Sustain. 4 (2010) 1-9.
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Instrumentation

• Radiometer and heat-flux gauge
quantify flux/fluence

• Cameras capture material response

• Photographs taken before and after

• Mass recorded before and after

• 3D Scans after
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Instrumentation

• Radiometer and heat-flux gauge
quantify flux/fluence

• Cameras capture material response

-1
• Photographs taken before and after

• Mass recorded before and after

• 3D Scans after
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Instrumentation

■ Radiometer and heat-flux gauge
quantify flux/fluence

■ Cameras capture material response

■ Photographs taken before and after]

■ Mass recorded before and after

■ 3D Scans after

Sandia
National
Laboratories

3500 kJ/m2

2500 kJ/m2

1500 kJ/m2

500 kJ/m2
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Instrumentation

• Radiometer and heat-flux gauge
quantify flux/fluence

• Cameras capture material response

• Photographs taken before and after

• Mass recorded before and after

• 3D Scans after
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Instrumentation

• Radiometer and heat-flux gauge
quantify flux/fluence

• Cameras capture material response

• Photographs taken before and after

• Mass recorded before and after
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• 3D Scans after
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Enhanced Post-Test Analysis

■ Better, quantitative empirical data through:

■ Ignition thresholds (see our previous papers)

Similar to past data.
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■ Mass-loss data

■ Photographic data

Quantitative analyses including:

— Char area.

— Heat flux at crater rim.

— Net energy delivered to crater.

■ 3D Scanner data

Quantitative analyses, similar to above.

Spatially resolves surface recession.

— Resolves 2D mass-loss map (non-charring materials)

— Maps mass loss to heat flux.

Sandia
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3D Scanner Technique

• 3D Scanner most valuable if surface receded (unstable char)

• Technique presented in previous paper. (Engerer & Brown, AIAA 2018-3761)

• Scanner spatially resolves surface recession.

• Localized mass loss calculated from surface recession

Assumption: Residual material density unchanged.
-

-40
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Mapping Data to Heat Flux
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• Spatially distributed heat flux complicates analysis.

• However, sample exposed to a variety of heat flux conditions.
• If deconvolve the problem, more data than in uniform heating case.

These enhanced techniques turn
a non-ideality into a feature!

Minimum heat
flux/fluence to
degrade material

- 20 -
E

-20 -
0.5 3

-40 

40 -20 0 20 40

Horizontal (rim)

Mass efflux at
variable heat flux

21



Outline

• Introduction and motivation

• Literature Review

• Solar Furnace & Experimental Methods

dl 10

10 
• Mass loss, crater size, & 3D scans.

• Discussion

• Conclusions

4

:
-

2 -

0

• •

- -

At 0 00

tYi
500 1000

Heat Flux (kW/m 2)

1500

Sandia
National
Laboratories

22



Cellulosic Materials

• Mass loss for cellulosic materials are consistent.
• Mass loss linear with fluence for unsustained ignition.

• Mass loss higher for sustained ignition cases.

• Data are coupled with other effects (e.g., increasing degraded area).
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Cellulosic Materials

• Crater radius determined from post-test images.
• Char extent predicted by heat flux at perimeter.

• Propagating ignitions consume upper-half or all of the sample.
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Synthetic Polymers

• Mass loss for synthetic polymers are less consistent.
• Chemical composition varies

• Heat flux was varied only for polystyrene experiments.

Mass loss fairly linear.

Crater radius consistent across various exposure magnitudes.

- Physics more complex? (e.g., screening of radiant energy?)
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• PMMA
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3D Scanner Results

• Among materials with significant thickness: _20

• Stable Chars inhibited surface recession. -4°

Data at/near resolution of scanner; lacking trends. T, -60

Examples: di -8G

— walnut veneer — polycarbonate -1 go

— epoxy/fiber composite — vinyl

• Without stable char, significant surface recession.
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Spatially Resolved Mass Loss
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• Mass loss calculated from crater depth.

• Assumption: Density unchanged by exposure (no residual char/swelling)

• Localized efflux approximately linear with fluence.

I I I I i I I I I i I I I I i I I I I i I I I I i I I I I i I I I I

0  i. r..f. TS .1....i....i....i....i....1

0 500 1000 1500 2000 2500 3000 3500

Fluence (kJ/m2)

0.15 -

o

I I I I i I I I I i I I I I i I I I I i I I I I i I I I I

polyethylene 1

polyethylene 2

/
0 1000 2000 3000 4000 5000 6000

Fluence (kJ/m2)
28



Spatially Resolved Mass Loss

• Polypropylene and rubber samples show variations, despite
having same nominal exposure level.
• Perhaps, radiation screening from pyrolyzate.
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Radiation Screening

• Many polymers
produced large
pyrolyzate clouds.

• Example:

• Polyproylene plastic chair I 5,770 kJ/mA2 I fps: 60 I elapsed time: —0.250 sec

e ern

8 cm

8 ern 8 em
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Extreme Heat Flux Models

• We theorize ignition models determined from the presence
or absence of a char (exceptions likely exist).

Sandia
National
Laboratories

Charring 7Solid-Phase Dominant
Ignition Models

Simple Physics. Focus of prior I
empirical correlations.

Model Requirements:
• Heat Flux/Fluence (dynamic)
• Thermophysical Properties
• Sample Thickness
• Surface Absorptivity

Non-charring

Gas-Phase Dominant
Ignition Models

Complex Physics. Requires i
Computational Models?

Model Requirements:
• All of the above, PLUS:
• Scale
• Wind
• Neighboring materials
• Pilot flames
• And more...



Conclusions
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■ Radially distributed heat flux complicates data analysis, but in
many cases enhances the end data.

■ Quantitative image analysis provides estimates:
■ Heat flux required to degrade sample.

■ Area / total energy contributing to pyrolysis reaction.

■ 3D Scans better characterize sample response:
■ Recession depths.

■ Mapping localized efflux to heat flux.

■ Data will contribute to model development for gas-phase
dominant ignition.

■ Solid-phase dominant ignition typically well-predicted by empirical
models (Engerer, et al., AIAA 2018-3764).

■ Gas-phase dominant ignition requires further development.
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