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Background

. Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable.

. Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over lps) ).

. Goal: Improve understanding of material models at extreme
conditions by pairing computational simulations with
experimental data.
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4 Background

Goal: Generalized solution for calibrating dynamic material
models.

Physicists: ideally want a solution that does not necessarily
require a statistician in the loop.

. Parameters of interest are physical: material properties with
"true" value that is of interest.

Solution: robust algorithm for parameter UQ calibration.

Firstly: Calibrate a well-understood model - two parameters
of the equation of state of tantalum.
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Experimental setup
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. "By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (EOS) can be
estimated".

. Massive electric currents treated as boundary conditions.

. Stress wave propagates thru system.



b Calibration
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inputs change.
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. Via uncertain inputs generate velocity curves using a computer
model.

. Probability distributions looks for "agreement" of outputs and
measurements.
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7 Challenges
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. How to accurate estimate uncertainties?

. Calibration parameters have physical interpretation.

. Lots of nuisance parameters.
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8 Approach o
. Bayesian Model Calibration (BMC) (Kennedy & O'Hagan 2001)

often used to "tune" computer model.

. Calibrated model for prediction (interpolation).

. Partitioned into physical parameters and nuisance
parameters.

Uncalibrated Model Calibrated Model
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9 Approach

. A vanilla Kennedy & O'Hagan 2001 model is

71(xi, 0) ± 8(xi) Ej

iid
- N(0, 0-2)

- GP(tto, Es)

. xi are known inputs (experiment test conditions, time)

. 9 = (a,-y) are calibration parameters.

. 7/ is the true value of the outcome as a function of x and O.

. Ei is a measurement error.

. JO is a discrepancy term.
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Framework

. We model the ith observation in the 1th experiment as,

Y(Xij) = -Yj) + (5G xi]) + cif

. a are the (unknown) values of the calibration parameters.

. -y j unknown values of experimental uncertainties for
experiment j.

. y(xij) is the observed velocity at time xu.

. ?Axij, a, -yj) is the computer model output at xii.

. S(, xij) is a G-P discrepancy term.

. cu are measurement uncertainties at xii.
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Dynamic material property calibration

. BMC framework to obtain inference for two material
properties of Tantalum.

. Bo and 8'0 are the Bulk modulus of tantalum and its pressure
derivative.

a = (a1,a2) = (Bo, BO)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density - yl
. Magnetic field scaling - -y2i, j = 1,2, • • • 9
. Aluminum thickness- -y3i, j = 1,2, • • • 9
. Tantalum thickness - j = 1,2, • • • 9

. Potential for overfitting and the lack of identifiability can
become problematic
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12 Some Issues

. A high-dimensional nuisance-space can Lead to overfitting.

. Model can fit well to data, solutions far from true parameter
values.

. Can we diagnose such overfitting? Can we mitigated it?

. Model discrepancy can further reduce the identifiability of
the calibration parameters.

>

Residuals are
-autocorrelated.

O. 2 0 0.07 O. 0 0.05 0.07 0
Tlme (us) Time (us)
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1, Model Discrepancy

. Without strong assumptions about discrepancy, KOH should
not be expected to provide correct inferences.

. 60 and 0 are not jointly identifiable (Loeppky et al., 2006;
Arendt et al., 2012; Brynjarsdir and 0?Hagan, 2014; Tuo and
Wu, 2016).

. Robust alternatives to G-P discrepancy?
. Brown and Hund (2018) use power likelihoods.

19(01Y) a exp (-14/1(1/10)10(0)

. Gave reasonable results.

. Problems with fewer experimental curves and more nuisance
params. are harder.

. Time series models?
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14 Nuisance parameters and overfitting

. Aluminum and Tantalum thickness parameters: These
nuisance parameters are measured with a device which we
beleive to be well registered.

. Measurement error is exclusive source of uncertainty. The
prior mean and variance of these nuisance parameters are
well known.

. Nuisance parameters are standardized (mean 0, variance 1).

. The standard informative (51) prior is:

(7kl, 1'k2, • • • 7k9) — N(0,19), k = 2,3,4

. "True values" are expected to look like a draw from a N(0, /9)
distribution.

4/16/19



16 Nuisance parameters and overfitting

Three types of overfitting:

. Overdispersion: Posterior estimates are collectively too
large.

. Indicates a "calibration solution". Good fit to data but
scientifically unreasonable.

. Standard informative prior usually prevents this from
occurring.

. Underdispersion: Posterior estimates are collectively too
close to O.
. Can lead to underestimation of uncertainty in a.
. Standard informative prior will not address this case.

. Collective Bias: The posterior estimates are collectively
biased (i.e. all are negative).
. indicates a systematic bias across experiments.
. Can lead to biased estimates of a to compensate.
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Collective Bias for 2 nuisance-sets

Nuisance parameter posteNors

Prior log-density (Standard): -11.84
Prior log-den.01, (Regularisation): -as

Prior loq-denshy (Standard):-11.84
Prior lop4ensay(Rapularinition),28

-2 2

. Left: No grouping occurs.

. Right: Collective bias implies systematic overfitting across
experiments.

. Standard prior assigns same values.
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17 A metric for overfitting

. We define,

1
A4,), = -Y) Vy=

i=1 p i=1

ay) 2

Prior beliefs about problem structure suggests:

M7 0 "=_', 1

. Under standard normal,

= N(m l 0,1/P) x [(1) — 1)x2(v(ID — 1) P —1)]

. Reasonable to check that the estimates ik)1,), and 17), are
coherent with prior.
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A metric for overfitting

Definition: We say that (m, v) is more coherent with the prior

than (m', v') if

iray,v,(rn, v) > 7riti,„v,,,(m', v')

. Define the set of all points which are less coherent with the

prior than (N17,1/7)

I'm cf = {(m,v) l 7-A4,,v,y(M-y, 177) > 7/07,v7(m, v)}

. Probability of prior coherency of (4/11,, flif )

pc(f47,f47)=1.
Iti,y,14y

7rivi,,v7(m,v) dmdv

1 L,p-...1 
L 
- 2_, I. (7,14,,,v, (M,y, 177) > 7rAll„V.i (Mt, Vt))

e=1
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I Diagnostic plot for simulated case p = 10
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. Orange: Point estimates and posterior draws of (M,y,14y)

. Blue: Prior probability contours.
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20 The moment penalization prior

. Overfitting of nuisance parameters leads to (M7,1/7) with low
prior coherency.

. The moment penalization (MP) prior penalizes solutions with
low prior coherency.

. Let ha(x) be a function which takes larger values when x is
close to a.

7r,Ay4P(-y) a ho(M,y)hi(liy)

Tries to encourage solutions with

M,-), R:10 kly ,'z--1 1

1

1
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, The moment penalization prior

. Simple and effective choice for h,(x): Gaussian kernels

ir,A)4,P(-y) cx exp [—AO/112] exp [—A2(/1, — 1)2]

. Ai and )k2 control how strongly we want to enforce
constraints.

. Reparameterize: col = 2Var(M7)Ai and w2 = 2Var(V-y)

. Write -y — MP(wi, co2) to mean that,

71/7 (-y) oc exp [ Pc.2̀)1 M,),2] exp [ (P Pw2 (Vy — 1)2]

. -y ,-, MP(1, 1) is the standard moment penalization prior.

o
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ZZ I Samples from the Standard MP prior

Standard Prior MPI1,11preer

. 10,000 draws via M-H for p = 2.

. As w co aLl density is pLaced on ±(1/4-1/A

. As p grows, the induced marginaL priors become N(0,1).

OO
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23 I Selection of Hyper-parameters

. Adequacy of prior depends on selection of w1 and cii2.

. Update or estimate with MAP. Weakly informative priors
allow likelihood to dominate the selection. Problem of
overfitting may not be addressed.

. Cross validation. Prediction or posterior based criteria leads
to overfitting. Computationally difficult.

. Sequential approach: Use the diagnostic plot to increase w1
and c.02 sequentially until prior coherency is reasonable.

1

1
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24 Comparison: SI vs SMP

For a given set of p nuisance parameters (71, • • • 7p) we
compute:

10 10 2

log 7rsi (7) = 
1

log (Aleyi, l 0, 1)) = --
2 
log(27) — E "*.?

h=1 h=1

PC.01 2 (P - 1 )W2 (v(

7

m) _ 1) 2
10g 7FA4p(̂ y) = C - (A47)

4 \

o

where Ml, and 17,,, denote the mean and variance of -y.

. Think about these prior log-densities as penalties (small
values) and rewards (large values).

. Compare penalty assigned by each prior over a wide range of
potential nuisance sets.
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25 Comparison: SI vs SMP o

. Compare penalty assigned by each prior over a wide range of
potential nuisance sets.

. No overfitting: Consider candidates for which overfitting is
unlikety to be present. -y — N(0, iio)

. Overdispersion: Explore regions of the nuisance space in
which magnitude of nuisance parameters is larger than
expected. -y — N(0,4 ho)

. Underdispersion: Magnitude is smaller than expected.
1, — N(0,1110
. Collective Bias: We explore regions where nuisance

parameters are collectively biased compared to our
expectations. -y — N(-1, lio)
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26 I Comparison: SI vs SMP
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, Moment penalization in the limit

Z-Regularization: Consider a set of p latent variables Z.

iid
Z1, • • • zp (s, N(0, 1)

'Yr?, 
4 — Z

Sz

. We enforce that ny = 0 and V,y = 1

. This approximates the limit situation for MP(wi,w2)

w1 oo; w2 —). oo

. As p increases, marginal prior on yk goes to N(0,1).

o
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28 I Z-Regularization: Marginal prior on -yk

p=2

p=5

P=3 p=4

-10 -05 01 15 10 -1S -10 0 0 10 5
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2. Data informed regularization o

The MP prior harnesses the known structure of the problem
and forces each group to behave reasonably.

. Not appropriate for all cases, and a more general form of
regularization is required.

. We consider the class of Global-Local Gaussian scale
m ixtu res:

. For k = 1, • • • p,

'Yk I (TON) td N(0, TOO

7 ̂-, g() and Ot, --, gk()

. Commonly used in sparse linear model settings.
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, Data informed regularization

Horseshoe prior is obtained by setting

T C+ (0, a) and C+ 0-0

Shrink globally: When regularization is required, global
parameter r becomes very small.

. Act locally: Active components are selected by allowing Oh to
become very large.

. If p is large, this can significantly increase the cost of BMC.
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Example: The simple machine

. Brynjarsdottir and O'Hagan (2014): The simpLe machine
delivers work

((x) =  
E x

1 +x/20

. x is the amount of effort put into the machine.

. E is the efficiency of the machine.

. Denominator accounts for loss of work due to friction.

. The naive simulator introduces model discrepancy

Ti(x, E) = Ex
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32 Example: The simple machine

. We consider p = 10 simple machines, and introduce base
efficiency Gj as a machine-dependent nuisance parameter.

. Inputs xl,x2, • • • xn evenly spaced over [1,4]

. Data generating process:

E xi

Yij = Gj + 1 + xi /20 +

Gj N N(0, 0.052)

ei — N(0, 0.012)

. Naive simulator:
77(x, E, G) = G + E x

. True efficiency is E = 0.65. Standardize parameters:

E — 0.65 Gh -

0.05 

0
a =  

0 
N(0,1) =   — N(0,1).3 
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Example: The simple machine

Model discrepancy leads to systematic bias.

9
Ca

Simulator at truth
  Simulator at mle

True Process
Observations

Effort

4
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34 Example: The simple machine

. Under standard informative prior

SI Prior: Nuisance Posteriors

-0_15 -0 10 -0 05 000 0 05 0 10 0 15 0 20

Nuisance Parameters

SI Prior: Diagnostic Plot

p, levels

0.5
0.1
0.05
0.01

P0 , 0
e

-1 0 0 0 115

Mean

4/16/19



35 Example: The simple machine

. Under moment penalization prior

Moment Penalization: Nuisance Posteriors Moment Penalization: Diagnostic Plot
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36 Example: The simple machine

SI Prior: Posterior tor efficiency

051 052 053 1154 055 0.50

Efhoency

SMP Prior Posterior for efficiency

0.51 0.52 0 53 0 54 0 55 058

Efhoency

. Posterior inference improves under MP, but is still very far
from truth.

. This is still valuable information! Model discrepancy is
4/16/19 leading to biased inference on the parameter of interest.



,7 Example: Borehole function

. Models water flow through a borehole (An & Owen, 2001;
Harper & Gupta, 1983)

. The true process,

27rTuAH

in (r/rW) (1, 1n(r/roq ,ic2LTu  Tu)

Most of the inputs are treated as known
r, Tu, AH fixed at usual values (Surjanovic & Bingham, 2017).

. Compare the moment penalization prior to the standard
informative prior.
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38 Example: Borehole function

. x = L known input where L is the length of the borehole
(meters).

. The input r,,, radius of the borehole (nuisance parameter),

rw — 0.1

ry = 
— N(0,1)

0.0161812

. The physical parameter Kw, hydraulic conductivity of the
borehole (meters per year).

Kw — 10950
a =   N(0, 1)

632.2

. A low fidelity simulator,

71(x, 0) =
27T,AH

) LJln(r/rw) (1.5 + 
 
(r/1nrw)I,Kw rt
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" I Example: Borehole function
Diagnostic plot
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40 I Example: Borehole function
Estimation of nuisance parameters

E

9

E

Standard Informative Prior MP(5, 1) Prior

1Y. — 912 = 6.62

ee°

-3 -2 -1 0

True gamma

E
E

w

96 = 0.92

-3 -2 -1 0

True gamma

1
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41 I Example: Borehole function
Simulation study

1 0
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0.1

0 4
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Prior Cohenncy
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. a, E {-1, 0, 2}.
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42 I Example: Borehole function
Simulation study

4/16/19

Prior

Prior Coherency

a, = 0 = -1 = 2 a* = 0

Avg MSE of 7

= -1 = 2 a* = 0

MSE of a

a, = -1 = 2

SI 0.05 0.02 0.19 0.51 0.52 0.51 2.07 2.03 2.07
MP(1,1) 0.10 0.06 0.27 0.26 0.38 0.15 4.81 1.97 13.21
MP(5,1) 0.50 0.45 0.59 0.10 0.12 0.06 9.79 6.5 18.71
MP(1,10) 0.12 0.06 0.34 0.29 0.41 0.17 4.76 2.28 13.29
MP(5,10) 0.76 0.73 0.83 0.12 0.15 0.08 10.72 7.29 19.42
Z-reg 0.95 0.95 0.95 0.12 0.15 0.09 13.66 10.18 22.26
H-shoe 0.07 0.04 0.18 0.35 0.48 0.27 5.73 2.57 14.64

*Summary of the Borehole simulation results. Reported value is the median across 100 simulations. Bold value indicates
"besr value in the column.

O

. Posterior inference on a gets worse as inference on nuisance
parameters improves.

. Still valuable information! Model discrepancy is leading to
biased inference on the parameter of interest.



" I Dynamic material property calibration
revisited

. Inference for two material properties of Tantalum.

. Bo and E310 are the Bulk modulus of tantalum and its pressure
derivative.

= a2) = (Bo, BO)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density -
. Magnetic field scaling - 72j, j = 1,2, • • • 9
. Aluminum thickness- 73j, j = 1,2,• • •9
. Tantalum thickness - 74j, j = 1, 2,• • •9

. Perform BMC for SI, SMP and MP(20, 40) priors.
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44 Dynamic material property calibration
Diagnostic plots
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45 I Dynamic material property calibration
Physical parameter posteriors

3 75

3 55

standard Informative

196 
iB1
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MP Prior (low penall)q

196 197 IBS 189 10 191

Bul, Modulus (BO)
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les .437 198 199 190 4,

Bulalodulus (SO)

. Similar posterior inference in all cases.

. Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.

O
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Conclusions

. Overfitting of nuisance parameters leads to systematic bias
which is often a symptom of model discrepancy.

. In complex high-dimensional problems, with appropriate
problem structure, we can:

. Identify: Probability of prior coherency identifies many types
of overfitting, should it occur.

. Reduce: The moment penalization prior reduces the
systematic bias of the nuisance parameters.

. Diagnose: Examine the sensitivity of posterior inference in
order to diagnose the presence and effect of model
discrepancy on the parameters of interest.
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