

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-4335C

Dealing with nuisance parameters for Bayesian model calibration

PRESENTED BY

Kellin Rumsey¹ & Gabriel Huerta¹

¹Department of Statistical Sciences
Sandia National Laboratories

*co-authors: Lauren Hund (SNL) and Derek Tucker (SNL)

laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

Nuclear Security Administration under contract
DE-NA-0003525. SAND NO. 2018-4586 PE

Statement

This work was supported by a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) grant. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

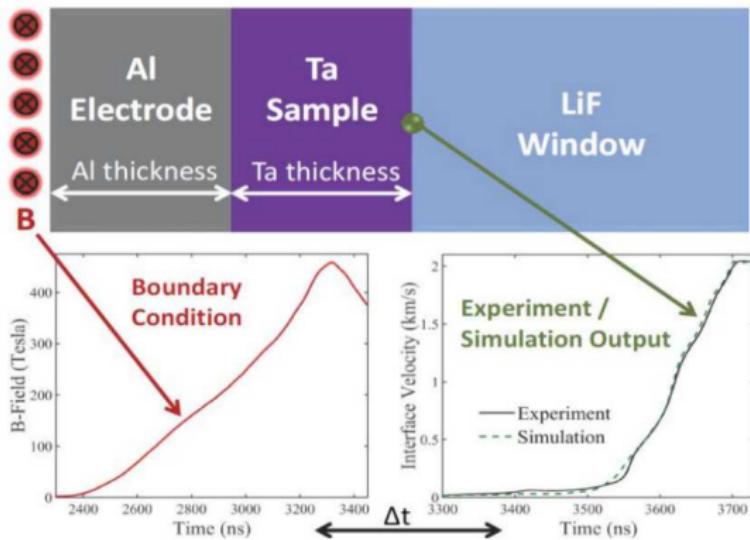
Background

- **Dynamic material properties experiments:** access to the most extreme temperatures and pressures attainable.
- **Sandia National Labs Z-machine:** pulsed power driver that can deliver massive electrical currents over very short timescales (of the order of 60MA over $1\mu\text{s}$).
- **Goal:** Improve understanding of material models at extreme conditions by pairing computational simulations with experimental data.

Background

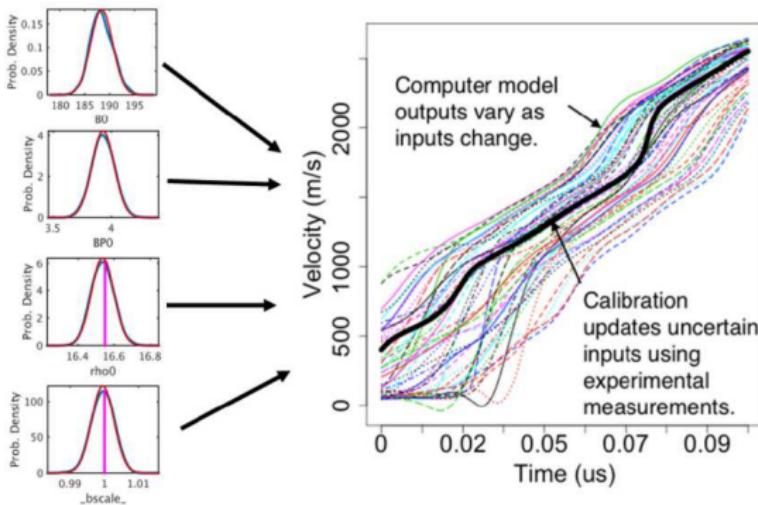
- **Goal:** Generalized solution for calibrating dynamic material models.
- **Physicists:** ideally want a solution that does not necessarily require a statistician in the loop.
- **Parameters of interest are physical:** material properties with "true" value that is of interest.
- **Solution:** robust algorithm for parameter UQ calibration.
- **Firstly:** Calibrate a well-understood model - two parameters of the equation of state of tantalum.

Experimental setup



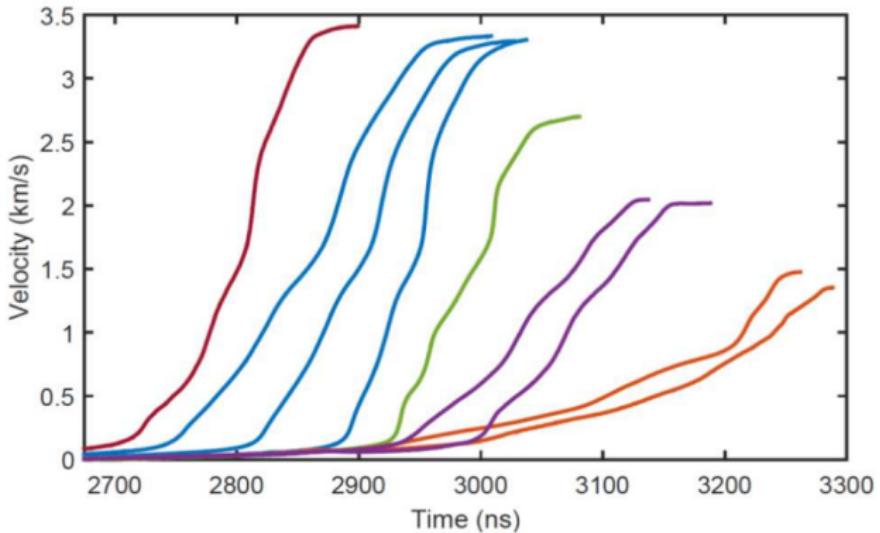
- "By coupling experimental and simulated velocity traces, parameters of the tantalum (Ta) equation of state (EOS) can be estimated".
- Massive electric currents treated as boundary conditions.
- Stress wave propagates thru system.

Calibration



- Via uncertain inputs generate velocity curves using a computer model.
- Probability distributions looks for "agreement" of outputs and measurements.
- Bayesian framework is a natural in this context...

Challenges

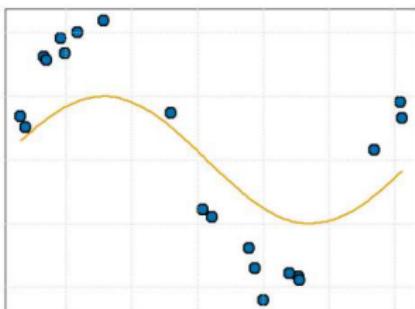


- How to accurately estimate uncertainties?
- Calibration parameters have physical interpretation.
- Lots of *nuisance* parameters.

Approach

- Bayesian Model Calibration (BMC) (Kennedy & O'Hagan 2001) often used to “tune” computer model.
- *Calibrated* model for prediction (interpolation).
- Partitioned into *physical parameters* and *nuisance parameters*.

Uncalibrated Model



Calibrated Model



Approach

- A *vanilla* Kennedy & O'Hagan 2001 model is

$$\begin{aligned}y(x_i) &= \eta(x_i, \boldsymbol{\theta}) + \delta(x_i) + \epsilon_i \\ \epsilon_i &\stackrel{iid}{\sim} N(0, \sigma^2) \\ \delta(\cdot) &\sim GP(\boldsymbol{\mu}_\delta, \boldsymbol{\Sigma}_\delta)\end{aligned}$$

- x_i are known *inputs* (experiment test conditions, time)
- $\boldsymbol{\theta} = (\boldsymbol{\alpha}, \boldsymbol{\gamma})$ are calibration parameters.
- η is the true value of the outcome as a function of x and $\boldsymbol{\theta}$.
- ϵ_i is a measurement error.
- $\delta(\cdot)$ is a *discrepancy term*.

Framework

- We model the i^{th} observation in the j^{th} experiment as,

$$y(x_{ij}) = \eta(x_{ij}, \boldsymbol{\alpha}, \boldsymbol{\gamma}_j) + \delta(, x_{ij}) + \epsilon_{ij}$$

- $\boldsymbol{\alpha}$ are the (unknown) values of the calibration parameters.
- $\boldsymbol{\gamma}_j$ unknown values of experimental uncertainties for experiment j .
- $y(x_{ij})$ is the observed velocity at time x_{ij} .
- $\eta(x_{ij}, \boldsymbol{\alpha}, \boldsymbol{\gamma}_j)$ is the computer model output at x_{ij} .
- $\delta(, x_{ij})$ is a G-P discrepancy term.
- ϵ_{ij} are measurement uncertainties at x_{ij} .

Dynamic material property calibration

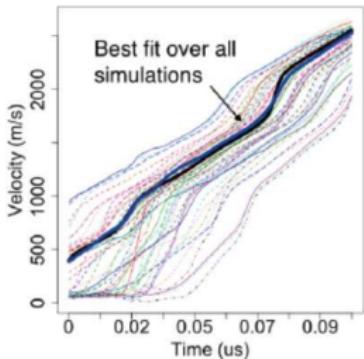
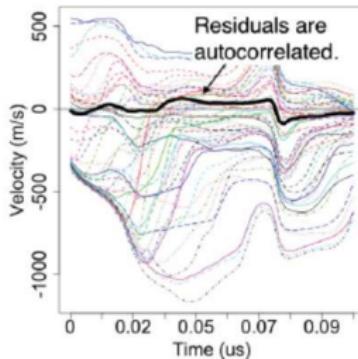
- BMC framework to obtain inference for two material properties of Tantalum.
- B_0 and B'_0 are the Bulk modulus of tantalum and its pressure derivative.

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2) = (B_0, B'_0)$$

- Four nuisance that may vary across $p = 9$ experiments
 - Tantalum density - γ_1
 - Magnetic field scaling - $\gamma_{2j}, j = 1, 2, \dots, 9$
 - Aluminum thickness- $\gamma_{3j}, j = 1, 2, \dots, 9$
 - Tantalum thickness - $\gamma_{4j}, j = 1, 2, \dots, 9$
- Potential for overfitting and the lack of identifiability can become problematic

Some Issues

- A high-dimensional *nuisance-space* can lead to *overfitting*.
- Model can fit well to data, solutions far from *true* parameter values.
- Can we diagnose such overfitting? Can we mitigate it?
- **Model discrepancy** can further reduce the identifiability of the calibration parameters.



Model Discrepancy

- Without strong assumptions about discrepancy, KOH should not be expected to provide correct inferences.
- $\delta()$ and θ are not jointly identifiable (Loeppky et al., 2006; Arendt et al., 2012; Brynjarsdir and O'Hagan, 2014; Tuo and Wu, 2016).
- Robust alternatives to G-P discrepancy?
 - Brown and Hund (2018) use *power likelihoods*.

$$p(\theta|Y) \propto \exp(-wl(Y|\theta)) p(\theta)$$

- Gave reasonable results.
- Problems with fewer experimental curves and more nuisance params. are harder.
- Time series models?

Nuisance parameters and overfitting

- **Aluminum and Tantalum thickness parameters:** These nuisance parameters are measured with a device which we believe to be well registered.
- Measurement error is *exclusive source* of uncertainty. The prior mean and variance of these nuisance parameters are well known.
- Nuisance parameters are standardized (mean 0, variance 1).
- The *standard informative (SI) prior* is:

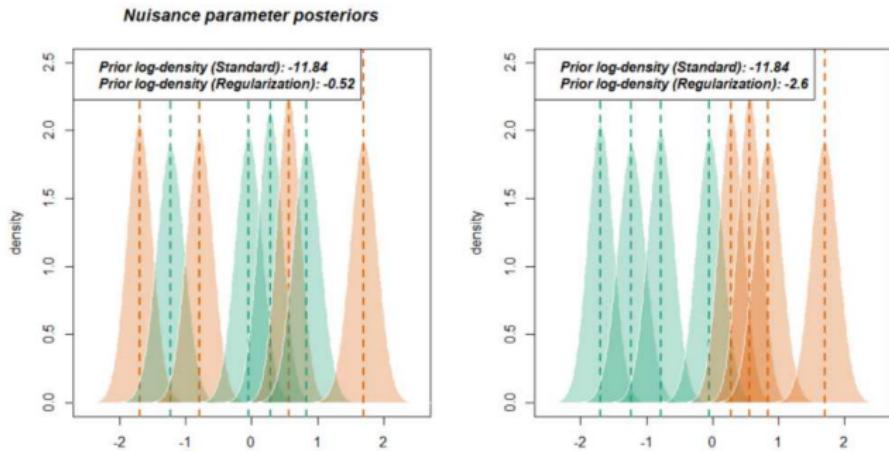
$$(\gamma_{k1}, \gamma_{k2}, \dots, \gamma_{k9}) \sim N(0, I_9), \quad k = 2, 3, 4$$

- “True values” are expected to look like a draw from a $N(0, I_9)$ distribution.

Nuisance parameters and overfitting

- Three types of overfitting:
- **Overdispersion:** Posterior estimates are collectively too large.
 - Indicates a “calibration solution”. Good fit to data but scientifically unreasonable.
 - Standard informative prior usually prevents this from occurring.
- **Underdispersion:** Posterior estimates are collectively too close to 0.
 - Can lead to underestimation of uncertainty in α .
 - Standard informative prior will *not* address this case.
- **Collective Bias:** The posterior estimates are collectively biased (i.e. all are negative).
 - Indicates a systematic bias *across experiments*.
 - Can lead to biased estimates of α to compensate.

Collective Bias for 2 nuisance-sets



- Left: No grouping occurs.
- Right: Collective bias implies systematic overfitting across experiments.
- Standard prior assigns same values.

A metric for overfitting

- We define,

$$M_\gamma = \frac{1}{p} \sum_{j=1}^p \gamma_j \quad V_\gamma = \frac{1}{p-1} \sum_{j=1}^p (\gamma_j - M_\gamma)^2$$

- Prior beliefs about problem structure suggests:

$$M_\gamma \approx 0 \quad V_\gamma \approx 1$$

- Under standard normal,

$$\pi_{M_\gamma, V_\gamma}(m, v) = N(m \mid 0, 1/p) \times [(p-1)\chi^2(v(p-1) \mid p-1)]$$

- Reasonable to check that the estimates \hat{M}_γ and \hat{V}_γ are *coherent* with prior.

A metric for overfitting

- **Definition:** We say that (m, v) is *more coherent with the prior* than (m', v') if

$$\pi_{M_\gamma, V_\gamma}(m, v) > \pi_{M_\gamma, V_\gamma}(m', v')$$

- Define the set of all points which are less coherent with the prior than $(\hat{M}_\gamma, \hat{V}_\gamma)$

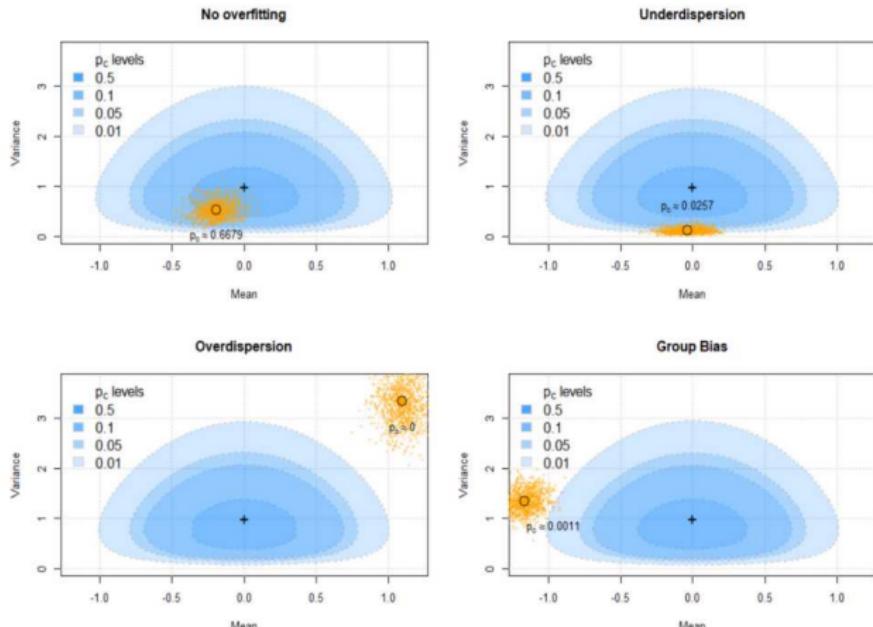
$$\Gamma_{\hat{M}_\gamma, \hat{V}_\gamma} = \left\{ (m, v) \mid \pi_{M_\gamma, V_\gamma}(\hat{M}_\gamma, \hat{V}_\gamma) > \pi_{M_\gamma, V_\gamma}(m, v) \right\}$$

- *Probability of prior coherency of $(\hat{M}_\gamma, \hat{V}_\gamma)$*

$$p_c(\hat{M}_\gamma, \hat{V}_\gamma) = \int_{\Gamma_{\hat{M}_\gamma, \hat{V}_\gamma}} \pi_{M_\gamma, V_\gamma}(m, v) \, dm \, dv$$

$$\approx \frac{1}{L} \sum_{\ell=1}^L \mathbb{1} \left(\pi_{M_\gamma, V_\gamma}(\hat{M}_\gamma, \hat{V}_\gamma) > \pi_{M_\gamma, V_\gamma}(m_\ell, v_\ell) \right)$$

Diagnostic plot for simulated case $p = 10$



- Orange: Point estimates and posterior draws of (M_γ, V_γ) .
- Blue: Prior probability contours.

The moment penalization prior

- Overfitting of nuisance parameters leads to $(\hat{M}_\gamma, \hat{V}_\gamma)$ with low prior coherency.
- The *moment penalization (MP) prior* **penalizes** solutions with low prior coherency.
- Let $h_a(x)$ be a function which takes larger values when x is close to a .

$$\pi_\gamma^{MP}(\gamma) \propto h_0(M_\gamma)h_1(V_\gamma)$$

- Tries to encourage solutions with

$$M_\gamma \approx 0$$

$$V_\gamma \approx 1$$

The moment penalization prior

- Simple and effective choice for $h_a(x)$: Gaussian kernels

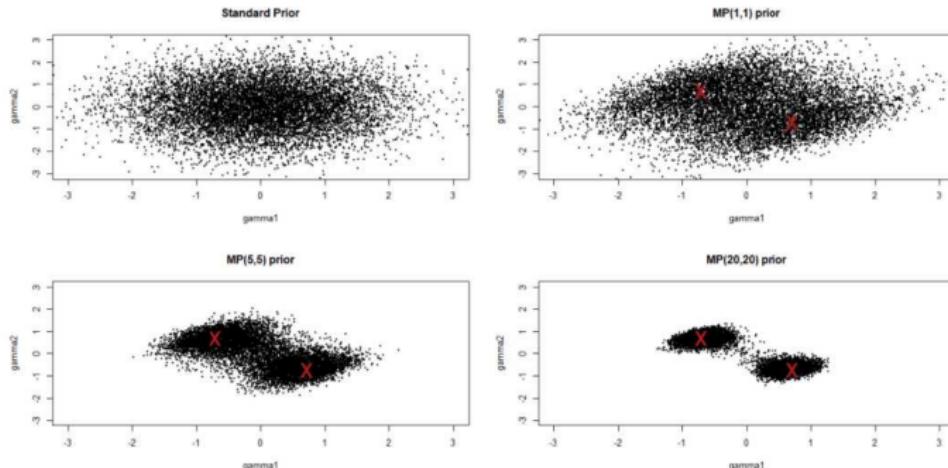
$$\pi_{\gamma}^{MP}(\gamma) \propto \exp[-\lambda_1 M_{\gamma}^2] \exp[-\lambda_2 (V_{\gamma} - 1)^2]$$

- λ_1 and λ_2 control how strongly we want to enforce constraints.
- Reparameterize: $\omega_1 = 2\text{Var}(M_{\gamma})\lambda_1$ and $\omega_2 = 2\text{Var}(V_{\gamma})\lambda_2$
- Write $\gamma \sim MP(\omega_1, \omega_2)$ to mean that,

$$\pi_{\gamma}^{MP}(\gamma) \propto \exp\left[-\frac{p\omega_1}{2}M_{\gamma}^2\right] \exp\left[-\frac{(p-1)\omega_2}{4}(V_{\gamma} - 1)^2\right]$$

- $\gamma \sim MP(1, 1)$ is the *standard moment penalization prior*.

Samples from the Standard MP prior



- 10,000 draws via M-H for $p = 2$.
- As $\omega \rightarrow \infty$ all density is placed on $\pm(1/\sqrt{2}, -1/\sqrt{2})$
- As p grows, the induced marginal priors become $N(0, 1)$.

Selection of Hyper-parameters

- Adequacy of prior depends on selection of ω_1 and ω_2 .
- **Update or estimate with MAP.** Weakly informative priors allow likelihood to dominate the selection. Problem of overfitting may not be addressed.
- **Cross validation.** Prediction or posterior based criteria leads to overfitting. Computationally difficult.
- **Sequential approach:** Use the diagnostic plot to increase ω_1 and ω_2 sequentially until prior coherency is reasonable.

Comparison: SI vs SMP

- For a given set of p nuisance parameters $(\gamma_1, \dots, \gamma_p)$ we compute:

$$\log \pi_{SI}(\boldsymbol{\gamma}) = \sum_{k=1}^{10} \log (N(\gamma_k \mid 0, 1)) = -\frac{1}{2} \log(2\pi) - \sum_{k=1}^{10} \frac{\gamma_k^2}{2}$$

$$\log \pi_{MP}(\boldsymbol{\gamma}) = c - \frac{p\omega_1}{2} (M_{\gamma})^2 - \frac{(p-1)\omega_2}{4} \left(V_{\gamma}^{(m)} - 1 \right)^2$$

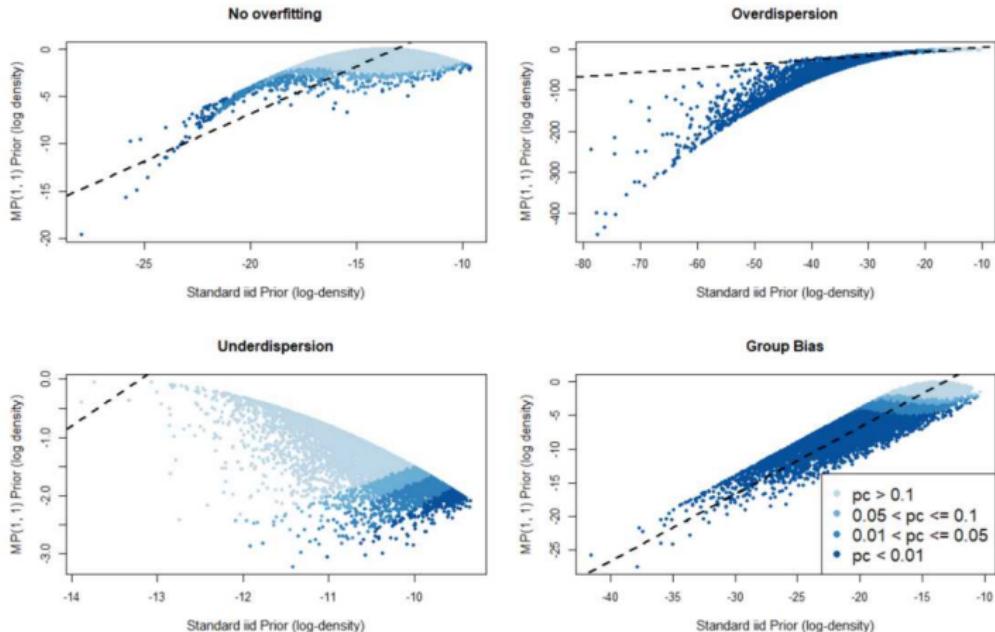
where M_{γ} and V_{γ} denote the mean and variance of $\boldsymbol{\gamma}$.

- Think about these prior log-densities as penalties (small values) and rewards (large values).
- Compare penalty assigned by each prior over a wide range of potential nuisance sets.

Comparison: SI vs SMP

- Compare penalty assigned by each prior over a wide range of potential nuisance sets.
- **No overfitting:** Consider candidates for which overfitting is unlikely to be present. $\gamma \sim N(0, I_{10})$
- **Overdispersion:** Explore regions of the nuisance space in which magnitude of nuisance parameters is larger than expected. $\gamma \sim N(0, 4 I_{10})$
- **Underdispersion:** Magnitude is smaller than expected. $\gamma \sim N(0, \frac{1}{4} I_{10})$
- **Collective Bias:** We explore regions where nuisance parameters are collectively biased compared to our expectations. $\gamma \sim N(-1, I_{10})$

Comparison: SI vs SMP



Moment penalization in the limit

- **Z-Regularization:** Consider a set of p latent variables Z .

$$Z_1, \dots, Z_p \stackrel{iid}{\sim} N(0, 1)$$

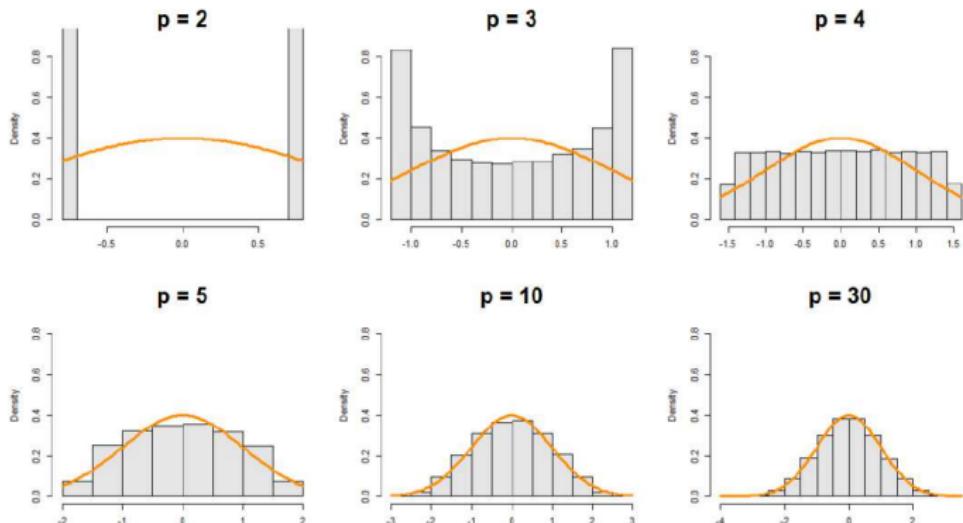
$$\gamma_k = \frac{Z_k - \bar{Z}}{S_Z}$$

- We enforce that $M_\gamma = 0$ and $V_\gamma = 1$
- This approximates the limit situation for $MP(\omega_1, \omega_2)$

$$\omega_1 \rightarrow \infty; \quad \omega_2 \rightarrow \infty$$

- As p increases, marginal prior on γ_k goes to $N(0, 1)$.

Z-Regularization: Marginal prior on γ_k



Data informed regularization

- The MP prior harnesses the known structure of the problem and forces each *group* to behave reasonably.
- Not appropriate for all cases, and a more general form of regularization is required.
- We consider the class of *Global-Local Gaussian scale mixtures*:
- For $k = 1, \dots, p$,

$$\gamma_k \mid (\tau, \psi_k) \stackrel{\text{ind}}{\sim} N(0, \tau \psi_k)$$

$$\tau \sim g() \quad \text{and} \quad \psi_k \sim g_k()$$

- Commonly used in sparse linear model settings.

Data informed regularization

- Horseshoe prior is obtained by setting

$$\tau \sim C_+(0, \sigma) \quad \text{and} \quad \psi_k \sim C_+(0, \sigma_k)$$

- *Shrink globally*: When regularization is required, global parameter τ becomes very small.
- *Act locally*: Active components are selected by allowing ψ_k to become very large.
- If p is large, this can significantly increase the cost of BMC.

Example: The simple machine

- Brynjarsdottir and O'Hagan (2014): The simple machine delivers work

$$\zeta(x) = \frac{Ex}{1+x/20}$$

- x is the amount of *effort* put into the machine.
- E is the *efficiency* of the machine.
- Denominator accounts for loss of work due to *friction*.
- The naive simulator introduces model discrepancy

$$\eta(x, E) = Ex$$

Example: The simple machine

- We consider $p = 10$ simple machines, and introduce base efficiency G_j as a machine-dependent nuisance parameter.
- Inputs x_1, x_2, \dots, x_n evenly spaced over $[1, 4]$
- Data generating process:

$$y_{ij} = G_j + \frac{E x_i}{1 + x_i/20} + \epsilon_i$$

$$G_j \sim N(0, 0.05^2)$$

$$\epsilon_i \sim N(0, 0.01^2)$$

- Naive simulator:

$$\eta(x, E, G) = G + E x$$

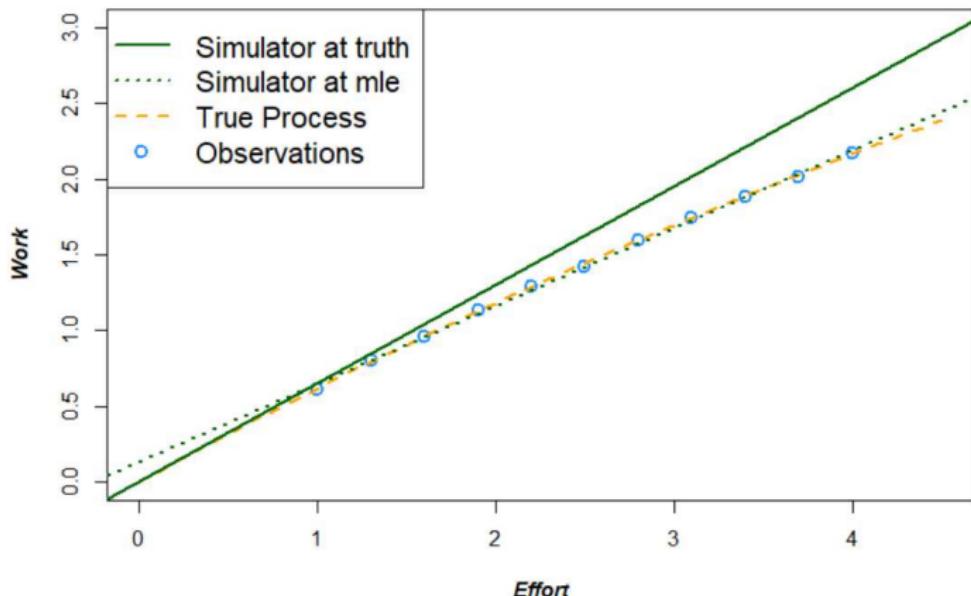
- True efficiency is $E = 0.65$. Standardize parameters:

$$\alpha = \frac{E - 0.65}{0.3} \sim N(0, 1)$$

$$\gamma_k = \frac{G_k - 0}{0.05} \sim N(0, 1)$$

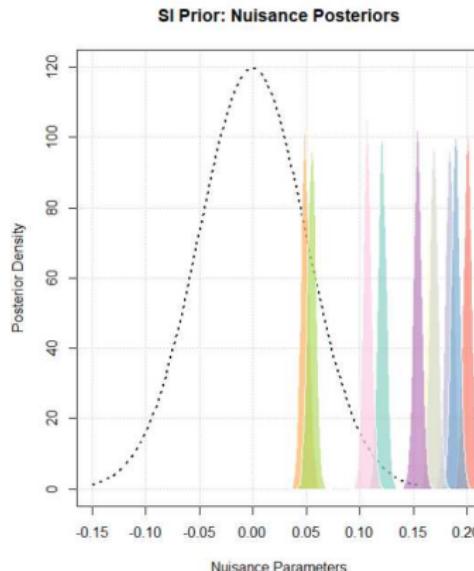
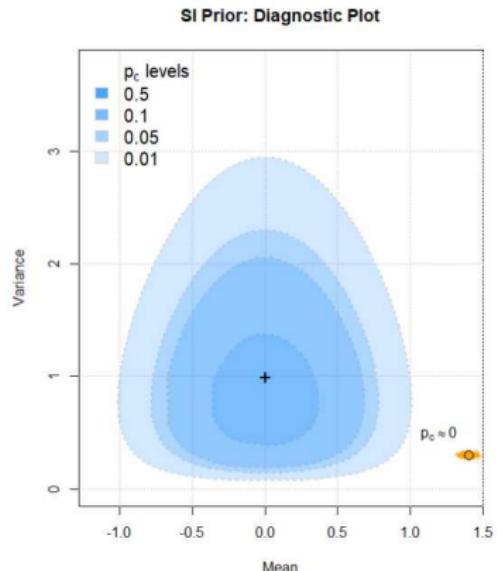
Example: The simple machine

- Model discrepancy leads to systematic bias.



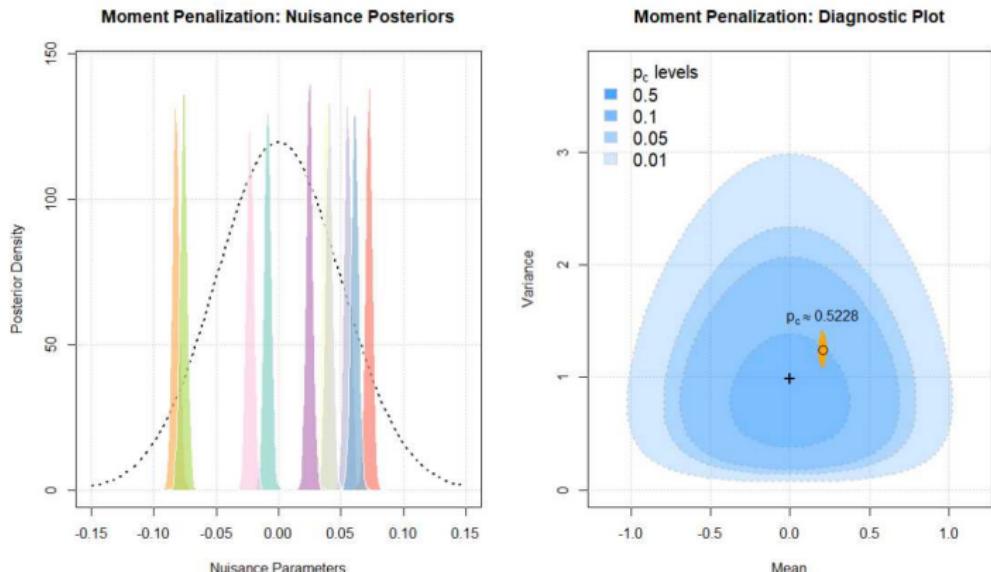
Example: The simple machine

- Under standard informative prior

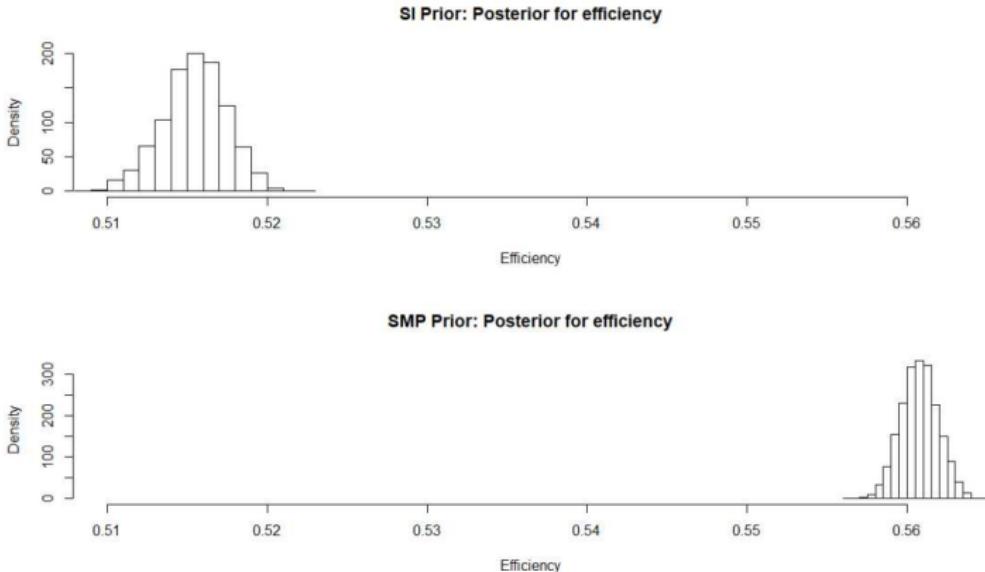


Example: The simple machine

- Under moment penalization prior



Example: The simple machine



- Posterior inference improves under MP, but is still very far from truth.
- This is still valuable information! Model discrepancy is leading to biased inference on the parameter of interest.

Example: Borehole function

- Models water flow through a borehole (An & Owen, 2001; Harper & Gupta, 1983)
- The true process,

$$\zeta(x, \theta) = \frac{2\pi T_u \Delta H}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l} \right)}$$

- Most of the inputs are treated as known
 - $r, T_u, T_l, \Delta H$ fixed at usual values (Surjanovic & Bingham, 2017).
- Compare the moment penalization prior to the standard informative prior.

Example: Borehole function

- $x = L$ known input where L is the length of the borehole (meters).
- The input r_w , radius of the borehole (nuisance parameter),

$$\gamma = \frac{r_w - 0.1}{0.0161812} \sim N(0, 1)$$

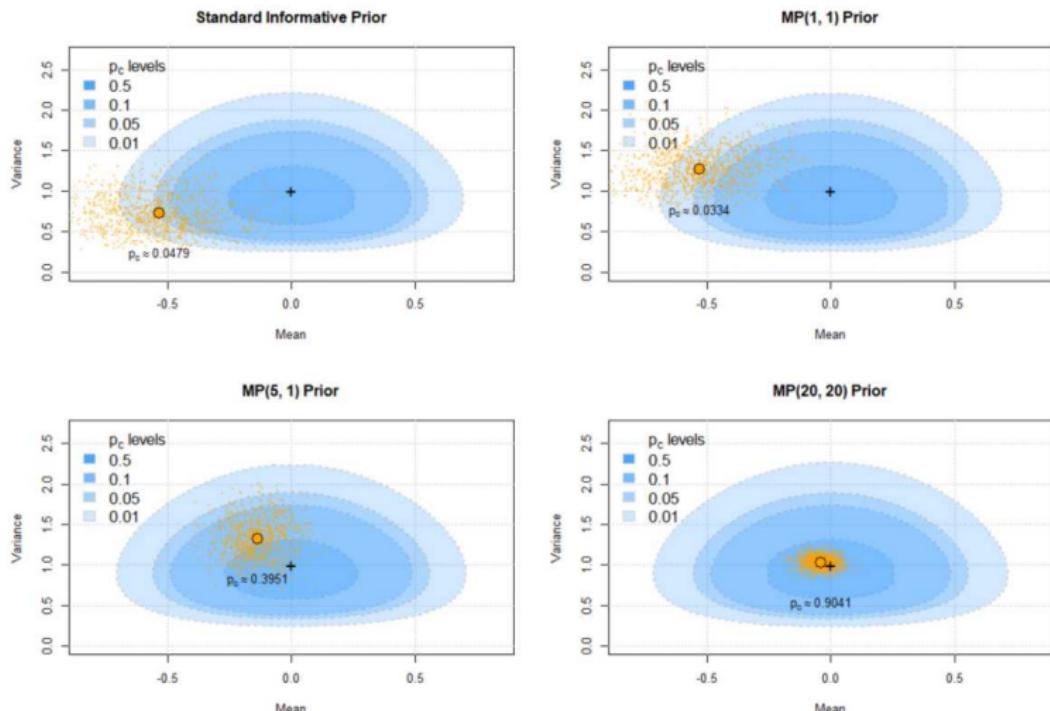
- The physical parameter K_w , hydraulic conductivity of the borehole (meters per year).

$$\alpha = \frac{K_w - 10950}{632.2} \sim N(0, 1)$$

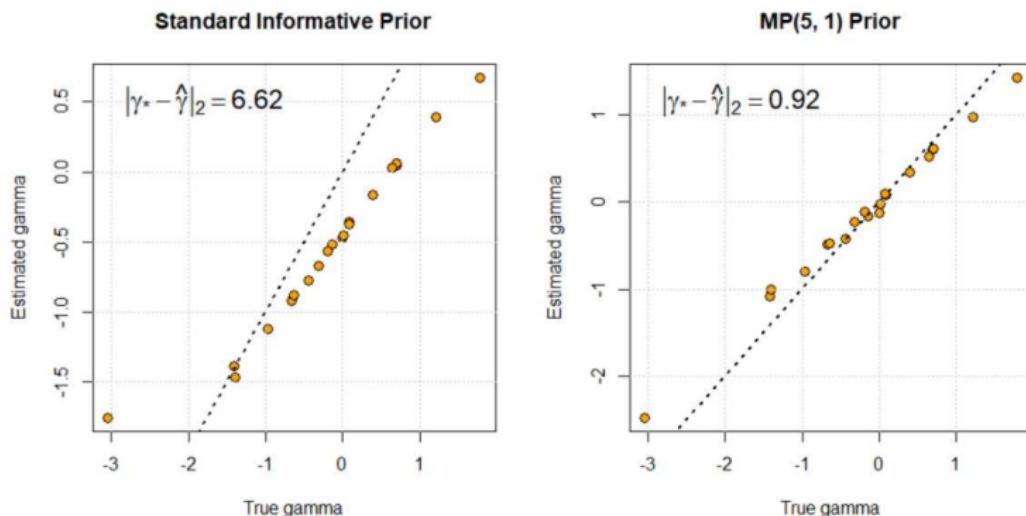
- A *low fidelity simulator*,

$$\eta(x, \theta) = \frac{2\pi T_u \Delta H}{\ln(r/r_w) \left(1.5 + \frac{1.4 L T_u}{\ln(r/r_w) r_w^2 K_w} + \frac{T_u}{T_l} \right)}$$

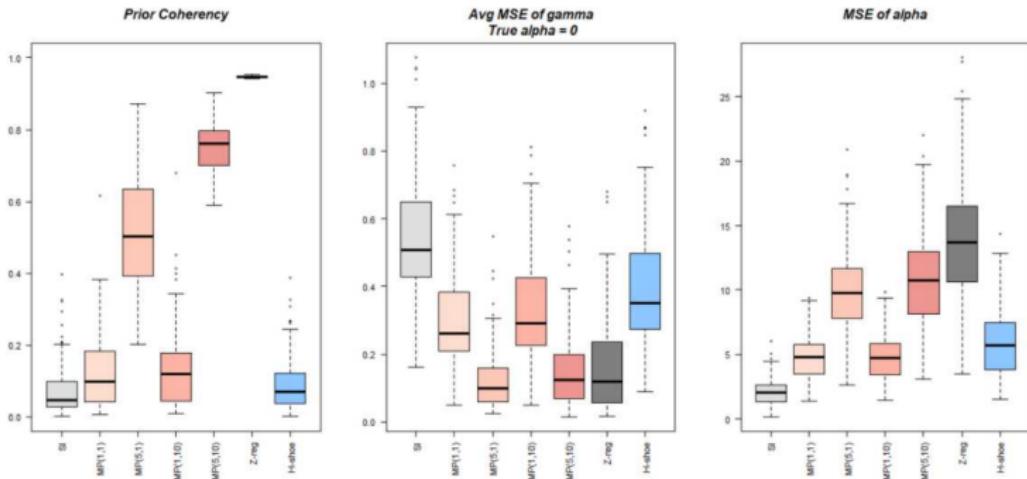
Example: Borehole function Diagnostic plot



Example: Borehole function Estimation of nuisance parameters



Example: Borehole function Simulation study



- $p = 5, n = 10.$
- $\alpha_\star \in \{-1, 0, 2\}.$

Example: Borehole function Simulation study

Prior	Prior Coherency			Avg MSE of γ			MSE of α		
	$\alpha_* = 0$	$\alpha_* = -1$	$\alpha_* = 2$	$\alpha_* = 0$	$\alpha_* = -1$	$\alpha_* = 2$	$\alpha_* = 0$	$\alpha_* = -1$	$\alpha_* = 2$
SI	0.05	0.02	0.19	0.51	0.52	0.51	2.07	2.03	2.07
MP(1,1)	0.10	0.06	0.27	0.26	0.38	0.15	4.81	1.97	13.21
MP(5,1)	0.50	0.45	0.59	0.10	0.12	0.06	9.79	6.5	18.71
MP(1,10)	0.12	0.06	0.34	0.29	0.41	0.17	4.76	2.28	13.29
MP(5,10)	0.76	0.73	0.83	0.12	0.15	0.08	10.72	7.29	19.42
Z-reg	0.95	0.95	0.95	0.12	0.15	0.09	13.66	10.18	22.26
H-shoe	0.07	0.04	0.18	0.35	0.48	0.27	5.73	2.57	14.64

*Summary of the Borehole simulation results. Reported value is the median across 100 simulations. Bold value indicates “best” value in the column.

- Posterior inference on α gets worse as inference on nuisance parameters improves.
- Still valuable information! Model discrepancy is leading to biased inference on the parameter of interest.

Dynamic material property calibration revisited

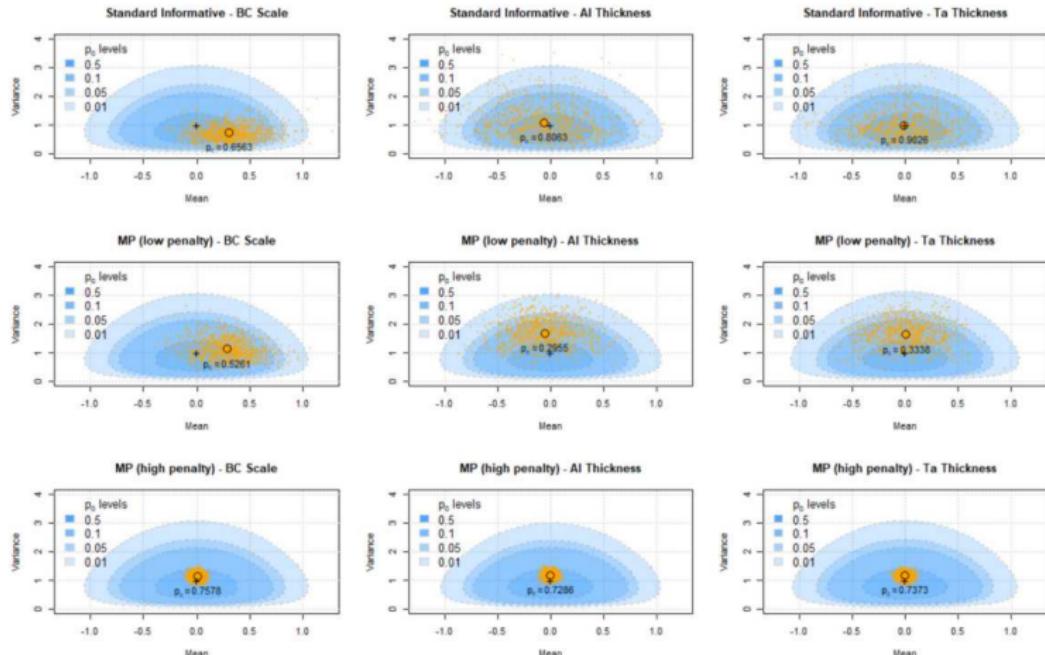
- Inference for two material properties of Tantalum.
- B_0 and B'_0 are the Bulk modulus of tantalum and its pressure derivative.

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2) = (B_0, B'_0)$$

- Four nuisance that may vary across $p = 9$ experiments
 - Tantalum density - γ_1
 - Magnetic field scaling - $\gamma_{2j}, j = 1, 2, \dots, 9$
 - Aluminum thickness- $\gamma_{3j}, j = 1, 2, \dots, 9$
 - Tantalum thickness - $\gamma_{4j}, j = 1, 2, \dots, 9$
- Perform BMC for SI, SMP and MP(20, 40) priors.

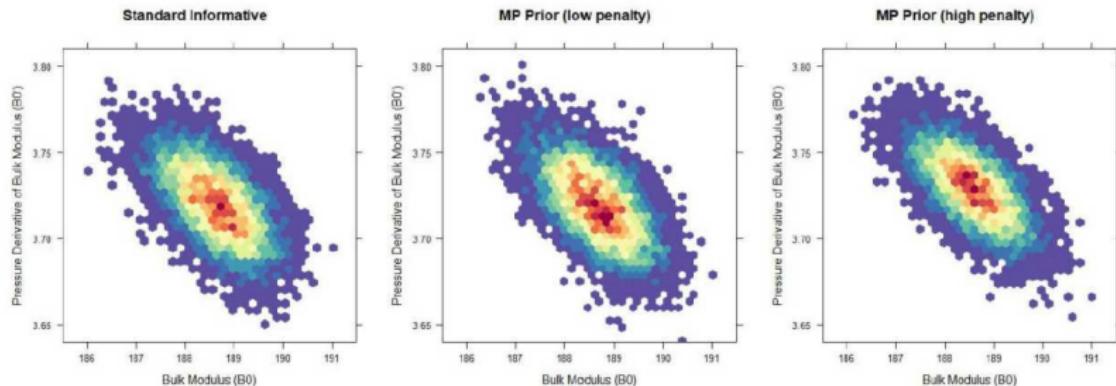
Dynamic material property calibration

Diagnostic plots



Dynamic material property calibration

Physical parameter posteriors



- Similar posterior inference in all cases.
- Indicates that model discrepancy is unlikely to be causing bias in the parameters of interest.

Conclusions

- Overfitting of nuisance parameters leads to systematic bias which is often a symptom of model discrepancy.
- In complex high-dimensional problems, with appropriate problem structure, we can:
 - **Identify:** Probability of prior coherency identifies many types of overfitting, should it occur.
 - **Reduce:** The moment penalization prior reduces the systematic bias of the nuisance parameters.
 - **Diagnose:** Examine the sensitivity of posterior inference in order to diagnose the presence and effect of model discrepancy on the parameters of interest.

References

- Arendt, P.D., Apley, D.W. and Chen, W. (2016) A preposterior analysis to predict identifiability in the experimental calibration of computer models. *IIE Trans.*
- Bayarri, M. J., et al. (2007a) Computer model validation with functional output. *Ann. Statist.*,
- Bhattacharya, A., et al. (2015) Dirichlet Laplace Priors for Optimal Shrinkage, *JASA*.
- Brown, J. L., et al. (2014) Flow strength of antalum under ramp compression to 250 GPa. *J. Appl. Phys*
- Brown, J. L. and Hund, L. B. (2018) Model calibration via deformation. *J.R. Statisti. Soc. C*.
- Brynjarsdottir, J. and OHagan, A. (2014) Learning about physical parameters: the importance of model discrepancy. *Invsr. Probl.*
- Kennedy, M. C. and OHagan, A. (2001) Bayesian calibration of computer models (with discussion). *J. R. Statist. Soc. B*.