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3 I Background @)

. Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable. ‘

. Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over 1us) ).

. Goal: Improve understanding of material models at extreme
conditions by pairing computational simulations with
experimental data.
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Background

Goal: Generalized solution for calibrating dynamic material
models.

Physicists: ideally want a solution that does not necessarily |
require a statistician in the loop.

Parameters of interest are physical: material properties with
"true” value that is of interest.

Solution: robust algorithm for parameter UQ calibration.

Firstly: Calibrate a well-understood model - two parameters
of the equation of state of tantalum. !




5 I Experimental setup
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« "By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (EOS) can be
estimated”.

. Massive electric currents treated as boundary conditions.

Jene  © Stress wave propagates thru system.



6 I Calibration

oo )
g ”f, Computer model
& | copmvayes
£4 Q| inputs change.
g - T E |
et 2
3t — T Calibration
£ S updates uncertain
164 166 168 0 inputs using
e : experimental
g‘“" / ol measurements.
5% 0 002 005 007 009
e Time (us)
. Via uncertain inputs generate velocity curves using a computer !
model.
. Probability distributions looks for "agreement” of outputs and
measurements.

P Bayesian framework is a natural in this context...



7 I Challenges

Velocity (km/s)

1 1 L

2700 2800 2900 3000 3100 3200 3300
Time (ns)

. How to accurate estimate uncertainties?
. Calibration parameters have physical interpretation.

. Lots of nuisance parameters.
4/16/19




8 I Approach

. Bayesian Model Calibration (BMC) (Kennedy & O'Hagan 2001)

often used to “tune” computer model.
. Calibrated model for prediction (interpolation).

. Partitioned into physical parameters and nuisance

parameters.

Uncalibrated Model

Calibrated Model

4/16/19
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0 I Approach m

. Avanilla Kennedy & O’Hagan 2001 model is

y(xi) = n(xi,0) + (X)) + €
€ < N(0,0?)

6(-) ~ GP(ps,Xs)

. X; are known inputs (experiment test conditions, time)
. 0 = (a,~y) are calibration parameters.
. nis the true value of the outcome as a function of x and 6.

. € IS a measurement error. '
. 0(-) is a discrepancy term.
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10 I Framework

. We model the " observation in the ji experiment as,

y(xij) = n(Xjj, 0, y;) + 0(5 Xij) + €

. a are the (unknown) values of the calibration parameters.

- 7 unknown values of experimental uncertainties for
experiment j.

- ¥(x;) is the observed velocity at time x;;.

- n(Xj, a, ;) is the computer model output at x;;.

. 6(,Xj) is a G-P discrepancy term. |

. €j are measurement uncertainties at x;;. I

4/16/19



0 I Dynamic material property calibration ED.:

. BMC framework to obtain inference for two material
properties of Tantalum.

. By and By, are the Bulk modulus of tantalum and its pressure
derivative.
a = (a1, a2) = (Bo, By)

. Four nuisance that may vary across p = 9 experiments

« Tantalum density - 1,

« Magnetic field scaling - v9,j = 1,2,---9
« Aluminum thickness- vs;, j=1,2,---9

. Tantalum thickness - v4j,j =1,2,---9

. Potential for overfitting and the lack of identifiability can |
become problematic

4/16/19



2 I Some Issues

4/16/19

A high-dimensional nuisance-space can lead to overfitting.
Model can fit well to data, solutions far from true parameter

values.

Can we diagnose such overfitting? Can we mitigated it?

Model discrepancy can further reduce the identifiability of
the calibration parameters.

2000
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0

500 1000

Best fit over all

0 0b2 005 007 009

simulations -~

Time (us)

Velocity (m/s)

-500

0

-1000

0

Residuals are
autocorrelated.
i 3

Time (us)




- I Model Discrepancy Ea.:

. Without strong assumptions about discrepancy, KOH should
not be expected to provide correct inferences.

. §() and @ are not jointly identifiable (Loeppky et al., 2006;
Arendt et al,, 2012; Brynjarsdir and O?Hagan, 2014; Tuo and
Wu, 2016).

. Robust alternatives to G-P discrepancy?

« Brown and Hund (2018) use power likelihoods.

p(@[Y) o< exp (—wl(Y[0) p(0)

. Gave reasonable results.

. . : [

. Problems with fewer experimental curves and more nuisance |
params. are harder.

. Time series models?

4/16/19



i I Nuisance parameters and overfitting

4/16/19

Aluminum and Tantalum thickness parameters: These |
nuisance parameters are measured with a device which we
beleive to be well registered. |

Measurement error is exclusive source of uncertainty. The
prior mean and variance of these nuisance parameters are
well known.

Nuisance parameters are standardized (mean 0, variance 1).
The standard informative (SI) prior is: |

(7f€17’7k27 o '/W?Q) ~ N(Oa I9)> k= 27374

“True values” are expected to look like a draw from a N(0, Ig) '
distribution. I



& I Nuisance parameters and overfitting

. Three types of overfitting:
. Overdispersion: Posterior estimates are collectively too
large.
. Indicates a “calibration solution”. Good fit to data but
scientifically unreasonable.
. Standard informative prior usually prevents this from
occurring.
. Underdispersion: Posterior estimates are collectively too
close to 0.
. Can lead to underestimation of uncertainty in c.
. Standard informative prior will not address this case.
. Collective Bias: The posterior estimates are collectively
biased (i.e. all are negative).

« Indicates a systematic bias across experiments.
. Can lead to biased estimates of a to compensate.

4/16/19




16 I Collective Bias for 2 nuisance-sets

Nuisance parameter posteriors

I
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. Left: No grouping occurs.

. Right: Collective bias implies systematic overfitting across

experiments.
. Standard prior assigns same values.
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7 I A metric for overfitting

. We define,

p 1 p 5
Z Vy =57 2. (= M)

j=1

‘DI'—l

. Prior beliefs about problem structure suggests:

M, =0 Vy =1

. Under standard normal,
Ty v, (M, V) = N(m [ 0,1/p) x [(p— )x*(v(p —1) | p— 1)] l

. Reasonable to check that the estimates M, and V., are
coherent with prior.
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r I A metric for overfitting m

. Definition: We say that (m,v) is more coherent with the prior
than (m’,v') if

T‘-M»y,V-y(ma V) > ﬂ'M%VW(m,, VI)

- Define the set of all points which are less coherent with the
prior than (M., V)

Ti o, = {(mv) Lo, (B, ) > e, () |

. Probability of prior coherency of (/\A/I% )

|
|
~ %Z 1 (WMA,,VW(MW Vy) > ”Mme(m@’Ve)) |
|
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19 I Diagnostic plot for simulated case p = 10

Variance

. Orange: Point estimates and posterior draws of (M, V)
. Blue: Prior probability contours.
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20 I The moment penalization prior m

. Overfitting of nuisance parameters leads to (M., V) with low
prior coherency.

. The moment penalization (MP) prior penalizes solutions with
low prior coherency.

. Let hqa(x) be a function which takes larger values when x is
close to a.

7 () oc ho(My) b (V)
. Tries to encourage solutions with

M, =0 Vy =1

4/16/19



2 I The moment penalization prior m

. Simple and effective choice for hq(x): Gaussian kernels

ny/lp('y) X exp [—)\1/\43] exp [—/\Q(Vy - 1)2]

. A1 and Ay control how strongly we want to enforce
constraints.

. Reparameterize: wy = 2Var(M,)A; and wp = 2Var(Vy)

. Write v ~ MP(w1,ws) to mean that,

Wﬁp(ﬁ’) X exp [—%Mg] exp [_W(VV - 1)2]

. v~ MP(1,1) is the standard moment penalization prior. |
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22 I Samples from the Standard MP prior

‘Standard Prior MP(1,1) prio

gammat gammat

MP(5,5) prior MP(20.20) prior

mmmmmmmmmmm

. 10,000 draws via M-H for p = 2. |
. Asw — oo all density is placed on +(1/v2, —1/v/2) |
. As p grows, the induced marginal priors become N(0, 1).
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2 I Selection of Hyper-parameters

4/16/19

. Adequacy of prior depends on selection of wy and wo.

. Update or estimate with MAP. Weakly informative priors

allow likelihood to dominate the selection. Problem of '
overfitting may not be addressed.

Cross validation. Prediction or posterior based criteria leads
to overfitting. Computationally difficult. |

. Sequential approach: Use the diagnostic plot to increase w;

and wy sequentially until prior coherency is reasonable.



2 I Comparison: Sl vs SMP [Ej

. For a given set of p nuisance parameters (yi,--- ) we
compute:

10 10 9

1 v

logmsi(y) = Y log (N(vx | 0,1)) = —= log(27) — Y &
k=1 2 k=1 2

pw1 2 (p—1ws 2
logmup(y) = € = S5 (My)* — =2 (V) — 1)

where M,, and V, denote the mean and variance of +.

. Think about these prior log-densities as penalties (small
values) and rewards (large values).

. Compare penalty assigned by each prior over a wide range of
potential nuisance sets.
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2 I Comparison: Sl vs SMP

. Compare penalty assigned by each prior over a wide range of |
potential nuisance sets.

. No overfitting: Consider candidates for which overfitting is |
unlikely to be present. v ~ N(0, I19)

. Overdispersion: Explore regions of the nuisance space in
which magnitude of nuisance parameters is larger than
expected. v ~ N(0,4 l19)

. Underdispersion: Magnitude is smaller than expected. |
6 as N(Oa ill())

. Collective Bias: We explore regions where nuisance |
parameters are collectively biased compared to our |
expectations. v ~ N(—1, I1o) I
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Comparison: Sl vs SMP

No overfitting Overdispersion
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z I Moment penalization in the limit

4/16/19

Z-Regularization: Consider a set of p latent variables Z.

2,2y MN@O,1)

7, —7
Sz

TR =

We enforce that M, =0and V, =1
This approximates the limit situation for MP(wy, ws2)

w1 — 00; Wy —» X0

As p increases, marginal prior on -, goes to N(0, 1).




2 I Z-Regularization: Marginal prior on ~,
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» I Data informed regularization m

. The MP prior harnesses the known structure of the problem
and forces each group to behave reasonably.

. Not appropriate for all cases, and a more general form of
regularization is required.

. We consider the class of Global-Local Gaussian scale
mixtures:

. Fork=1,---p,

e | (7 ) " N(O, Tebe)
T~g() and ¢~ gg() '

. Commonly used in sparse linear model settings.
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% I Data informed regularization m

. Horseshoe prior is obtained by setting
T~Cy(0,0) and ¢~ Ci(0,0%)
. Shrink globally: When regularization is required, global

parameter 7 becomes very small.

. Act locally: Active components are selected by allowing v, to
become very large.

. If pis large, this can significantly increase the cost of BMC.

4/16/19



& I Example: The simple machine

. Brynjarsdottir and O’'Hagan (2014): The simple machine

delivers work
E x

™) = T%730

. X is the amount of effort put into the machine.
. Eisthe efficiency of the machine.
. Denominator accounts for loss of work due to friction.

. The naive simulator introduces model discrepancy

n(x, ) = Ex

4/16/19




@ I Example: The simple machine m

. We consider p = 10 simple machines, and introduce base
efficiency G; as a machine-dependent nuisance parameter.
. Inputs xq, X2, - - - xp evenly spaced over [1, 4]
. Data generating process:
Vi =6t +Ex),-<,/20 A
Gj ~ N(0,0.05%)

€ ~ N(0,0.01%)

. Naive simulator:
n(x,E,G) =G+ EX |

. True efficiency is E = 0.65. Standardize parameters: |
E—0.65 Gr— 0
= 1 = ~ pd 1
()‘23 pv (()7 ) fYk ().()Ei (()7 )
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5 I Example: The simple machine

. Model discrepancy leads to systematic bias.

o .
“ |—— Simulator at truth
o | Simulator at mle
&= True Process
©  Observations -
o ] -8
s o
N g
o w0 o
§ ~ oo
o | & ‘e 4
0
o
o
° T T T T T
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34 I Example: The simple machine

. Under standard informative prior
S| Prior: Nuisance Posteriors Sl Prior: Diagnostic Plot
o
LS p. levels
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s I Example: The simple machine

. Under moment penalization prior
Moment i i i Moment Penalization: Diagnostic Plot
o
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36 I Example: The simple machine

S| Prior: Posterior for efficiency
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. Posterior inference improves under MP, but is still very far
from truth.
. This is still valuable information! Model discrepancy is
416119 leading to biased inference on the parameter of interest.



¥ I Example: Borehole function m

4/16/19

Models water flow through a borehole (An & Owen, 2001;
Harper & Gupta, 1983)

The true process,
2Ty AH
ln(l’/l’w) (1 + W + %)

C(X,e) =

Most of the inputs are treated as known
o I, Ty, T, AH fixed at usual values (Surjanovic & Bingham, 2017).

Compare the moment penalization prior to the standard |
informative prior. |




% I Example: Borehole function m

. X =L known input where L is the length of the borehole
(meters).

. The input ry, radius of the borehole (nuisance parameter),

hy — 0.1

= w=Ul N1
7= ooz~ NOD

. The physical parameter K, hydraulic conductivity of the
borehole (meters per year).
Ky — 10950

= D We 1
@ 632.2 0,1)

. A low fidelity simulator,
2T, AH

n(x,0) = N 1.4LT, Ty
In(r/ry) (1.0 + (/1) 2Ke + f)
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Vanance

Variance

Example: Borehole function
Diagnostic plot
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b I Example: Borehole function
Estimation of nuisance parameters

4/16/19

Estimated gamma
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) I Example: Borehole function
Simulation study

E £ £ ¢
§ § § §
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“ I Example: Borehole function

4/16/19

Simulation study

Prior Coherency Avg MSE of y MSE of a
Prior a,=0 a,=-1 a*:Qla*: a,=-1 a*:2‘ a,=0 a=-1 a,=2
SI 0.05 0.02 0.19 0.51 0.52 0.51 2.07 2.03 2.07
MP(L,1) 0.10 0.06 0.27 0.26 0.38 0.15 481 1.97 1321
MP(5,1) 0.50 0.45 0.59 0.10 0.12 0.06 9.79 6.5 18.71
MP(1,10)  0.12 0.06 0.34 0.29 0.41 0.17 4.76 2.28 13.29
MP(5,10)  0.76 0.73 0.83 0.12 0.15 0.08 10.72 7.29 19.42

Z-reg 0.95 0.95 0.95 0.12 0.15 0.09 13.66 10.18 22.26
H-shoe 0.07 0.04 0.18 0.35 0.48 0.27 5.73 2.57 14.64

*Summary of the Borehole simulation results. Reported value is the median across 100 simulations. Bold value indicates
“best” value in the column.

. Posterior inference on « gets worse as inference on nuisance

parameters improves.

. Still valuable information! Model discrepancy is leading to

biased inference on the parameter of interest.




“ I Dynamic material property calibration m
revisited

. Inference for two material properties of Tantalum.

. Bo and Bj, are the Bulk modulus of tantalum and its pressure
derivative.

a = (a1, a2) = (Bo, By)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density -
« Magnetic field scaling - y9, j = 1,2,---9
o Aluminum thickness- vs;, j =1,2,---9
. Tantalum thickness - y4j,j =1,2,---9

|
. Perform BMC for SI, SMP and MP(20, 40) priors. |
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Dynamic material property calibration
Diagnostic plots
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. I Dynamic material property calibration
Physical parameter posteriors

Standard Informative MP Prior (low penalty) MP Prior (high penalty)

2
El

L) :
s’

of Bulk Moduius (30)

re Derivative of Bulk Modulus (30
Pressure Deilvative of Eulk Modulus (30)

Pressu

o 191
Buk Modubis (B0) Bulk Modulus (B0) Bulk Modulus (B0)

. Similar posterior inference in all cases.

. Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.
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w I Conclusions

. Overfitting of nuisance parameters leads to systematic bias
which is often a symptom of model discrepancy.

. In complex high-dimensional problems, with appropriate
problem structure, we can:

. Identify: Probability of prior coherency identifies many types
of overfitting, should it occur.

. Reduce: The moment penalization prior reduces the
systematic bias of the nuisance parameters.

. Diagnose: Examine the sensitivity of posterior inference in
order to diagnose the presence and effect of model
discrepancy on the parameters of interest.
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