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Sandia National Labs
Airborne Computer
(SANDAC)

https://shop.minimuseum.com/products/first-
super-computer

https://www.tomshardware.com/picturestory/866-
supercomputer-department-of-energy-amd-intel-
nvidia.html#s5
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Dennard scaling
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Need for new paradigm of computing
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What is neural-inspired, neuromorphic, brain-inspired computing?
* Many terms

* TFundamental notion of taking inspiration from how the brain performs computation
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Automatic Target Recognition (ATR) - an exploitation algorithm for the detection or
classification of items of interest via a remote sensor

Sensed

Detector Indexer , Identifier Score
Data

Three-stage ATR block diagram

* Detector - first operates upon the raw sensed data to extract regions which express
features or expressions that there may be a target of interest in the smaller identified
sub-region

* Indexer - operates upon this reduced data to compare against the representations of
known targets of interest

 |dentifier - receives regions of interest (ROIs) as well as cues/hypotheses regarding the
salient features (whether template or model based) which are used to determine a
quantified score
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Radar beam

Radar pulse
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~ Azimuth
direction

http://what-when-how.com/remote-sensing-from-air-and-space/theory-radar-remote-sensing-part-1/
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Sensor induced challenges -

* Unknown sensor types
* Synthetic Aperture Radar (SAR) or High-range Resolution (HRR)

e Signal variability due to coherence, specularity, and speckle
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Neural Circuit Equivalent

One-hot

encoding for

each pixel # templates
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Cast templates as weight matrix
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Exploring suite of hardware platforms
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Initial results from Intel Neural Compute Stick 2 -

Architecture DNN accelerator

Power ~1W

Throughput 307.4 fps

Batched throughput 1156.397 fps (10)
(batch size) 1536.95 fps (50)

1614.5227 fps  (100)
1648.32 fps (250)

50x50 input tile
100 templates
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Initial results from IBM TrueNorth -

Power 123 mw (3 W system)
Throughput 1000 fps
CNN Accuracy ~94.36%

32x32 input tile
~10 templates

LB IS




Neural-Inspired Approaches for ATR

University Collaborations

Naresh Shanbhag Jennifer Hasler Kaushik Roy
Deep In-memory Architecture Field Programmable Analog Array = Programmable Ultra-efficient
(DIMA) (FPAA) Memristor-based Accelerator for
* Co-located memory & compute * Ultra-low power device coupling Machine Learning Inference
computational speed of analog (PUMA)
w}j;’“;:":{% computing & digital communication , Optimization of energy




Neural-Inspired Approaches for ATR

Thank you




