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Characteristics of Electricity Generation Technologies

Coal ( > 30% of US power)
High capital, low marginal cost

High capacity

Nuclear (-20%)
Flat load (-2 years)

Natural Gas (-30% of US power)
Steam: 300-1000 MW, long startup, limited flexibility

Gas Turbine: 10-50 MW, high cost, quick start units

Combined-cycle: High efficiency

Renewables
E.g., geothermal, biomass, hydro, solar, wind

Generation capacity not controllable (wind, PV)

Increased variability during operation
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North American Independent System Operators and Regional Transmission Organizations

Alberta Electric
System Operator

California ISO
(CAISO)

New York ISO
(NYISO) New England

ISO (ISO-NE)

PJM

Electric System Operator
(IESO)

VAidcontinent ISO
(MISO)

Southwest
Power Pool
(SPP)

Electric Reliability
Council of Texas

ERCOT)

Source: Velocity Suite, ABB
[Energy Primer„ A Handbook of Energy Market Basics, Staff Report, FERC]



Electricity Supply and Delivery

Independent System Operators:
Ensure reasonable rates, terms, conditions in market

Promote reliable, secure, efficient infrastructure

Challenges:
Demand does not vary by price
Little to no storage capacity
Flow path governed by physics, not controlled

Demand must be exactly matched by generation
Cannot violate operating limits on lines/generators

Accurately forecast demand
Effectively commit and dispatch generating units
Quickly increase/decrease generator output
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Promote reliable, secure, efficient infrastructure

Challenges:
Demand does not vary by price
Little to no storage capacity
Flow path governed by physics, not controlled

Demand must be exactly matched by generation
Cannot violate operating limits on lines/generators

Accurately forecast demand
Effectively commit and dispatch generating units
Quickly increase/decrease generator output

PSE Research Opportunities



ISO Transmission Network
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System Description:

118 buses
186 branches
91 load sides
54 thermal units
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Transmission Network Models

Power / current Balance
Generation, demand, bus balances

PI transmission model
Real/reactive power, IV relationships

Line losses, other elements

Operating constraints
Thermal limits on lines

Generator limits, voltage / phase
angle limits

Written in PQ, lv, rect, polar

Typical size: -10,000 buses/lines

FR
AC Power Flow

Sandia
National
Laboratories

Nonlinear IV > PQ
ull system constraints

DC Power Flow

I line:approximation
(LP, M I P)

P, phase angle only



ISO OPF Applications: Unit Commitment FR

Day ahead unit commitment
Determine the On/Off schedule for generation units

Based on forecast demands

Include some model of the transmission network

Generator up/down time constraints, ramping limits

Used to determine wholesale pricing

Formulations:
UC (MIP)

Copper-plate assumption

Ignores congestion (thermal limits)

SCUC+DCOPF (MIP)
Real power flows only

DCOPF assumptions (linearized model)

Can consider losses

AC feasibility tested on solution

SCUC+ACOPF (MINLP)
Includes real and reactive power dispatch

Nonlinear, non-convex model

Sandia
National
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ISO OPF Applications: Unit Commitment PM Nationalaldia
Laboratories

Locational marginal pricing (LMP) determines spot
prices for wholesale market

Dual variable on the real power balance at network buses

Considers marginal unit cost, network congestion, and
power losses

* Global solution highly desired...

Challenges:
Committing least cost while maintaining reliability

Demands (+ other parameters) are uncertain (Stoch. Prog.)

AC feasibility tests remove optimality

Need more accurate (nonlinear) models



ISO OPF Applications: Economic dispatch WI !aaaries

Real-time economic dispatch
Run every hour (with 5-15 minute dispatch)

Generator commitment (discrete decisions) fixed

Solve for generator setpoints

* Global solution highly desired...

DCOPF formulation used with AC feasibility tests

Challenges:
Desire more accurate models of generator and system
capabilities (nonlinear ACOPF+)



Nonlinear Optimization for Power Grid Systems WI nries

Fast Solution of ACOPF (NLP)

Global Solution of Nonlinear Power Grid, e.g. UC-AC (MINL

2 A
69 68

N-1 Contingency Constrained ACOPF (Stochas ic LP)

co ,80 

81

Improved Resiliency through design and operation
54 thermal units

A

One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

[http://motonece.iitedu/datailtscuc/IEEE118bus_figure.pdf]
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Modeling Power Systems with Pyomo

Algebraic
• Modeling

William E. Hart
Carl Laird
Jean-Paul Watson
David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

42) Springer

Hackebeil, Hart, Laird,
Siirola, Watson, Woodruff,

and many others...

IL_

Sandia
National
Laboratories

1 Existing Solvers



Modeling Power Systems with Pyomo

Algebraic
Modeling

Power System
Model Formulation

& Solution
System Analysis

Matpower & Other
Input Formats (PSSE

Integrated
Python-based

toolchain

Pyomo

William E. Hart
Carl Laird
Jean-Paul Watson
David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

42) Springer

Hackebeil, Hart, Laird,
Siirola, Watson, Woodruff,

and many others...
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ACOPF Problem Formulation

min GeneratorCostg (Pg, Qg)
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ACOPF Solution with Pyomo/IPOPT PIR Ilaaltindoiaal
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Number of

Variables

Solution Time

(CPU Seconds)

case4gs 67 -0.015

case5 67 0.003

case9 95

case9Q 95 0.004

case6ww 105 0.004

nesta_case_14_ieee 194 0.007

casel4 197 0.005

case30

case24_ieee_rts

case39

399 0.028

416 0.016

465 0.015

case57 767 0.015

case118 1832 0.037

case89pegase 1881 0.067

case300 4025 0.13

case30Q 4025 0.14

case2383wp 28456 2.6

111111.111r

111M1

ut global solution is highly desired...

case3012wp 35242



Rectangular PQV Model

Power Balance
E ,t E pi,t tvg t pgG,t 0
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Rectangular PQV Model

Power Balance
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Relaxation of Rectangular PQV Model ffi [Jaaaries

Second-Order Cone Programming (SOCP) relaxation
(Jabr, 2006, Kocuk, 2015)

Cb ,b ,t = ,t)2 +(4) t)2 = 2Jb t

Cb,k,t = 21b,tek '11 tVjk = 2Jb,t V k,t COS Bb,k,t

S b ,t = r b.,tVjk — V764,t = — 21b,t 21k,t Sill Bb,k,t



Relaxation of Rectangular PQV Model
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Global Solution of ACOPF with Pyomo/IPOPT

Table 1: Problem Size and Performance Results
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National
Laboratories

Case Name Optimal Solution Optimality Gap (%) CPU Time (s) Iterations

Case6ww
Casel4
Case30
Case39
Case57
Case89
Casel 18
Case300

NESTA Case6ww
NESTA Casel4
NESTA Case30
NESTA Case39
NESTA Case57
NESTA Case89
NESTA Casell8
NESTA Case300

3126.36
8081.52
574.52

41864.18
41737.79
5817.60

129660.69
719725.10

3143.97
244.05
204.97

96505.52
1143.27
5819.81
3718.64
16891.28

8 x 10-3
3 x 10-3

0.0
5 x 10-3
6 x 10-3
9 x 10-3
6 x 10-3
9 x 10-3

0.0
3 x 10-3

0.0
9 x 10-3
6 x 10-3
9 x 10-3

0.0
0.0

0.26
0.43
0.95
1.21
7.29
46.2
18.5
82.7
0.74
0.22
0.57
3.00
9.62
55.8
93.7
138.2

4
3
5
3
12
44
14
49
7
3
4
8
20
57
55
26



Relaxation of SCUC+ACOPF (MISOCP)
min fp + fsu fsd

A2g(PgG,t)2 AgiPgG,t Ag°yg,t <

fP = EEcT,t,
gEG tET

_EE 
Kgs:17-6g,T,t

gEg tET TES9

fsd EE Kgsdwg,t

gEg tET

E time Yg,t
t'=t—Tg.

E Wg,t' 1 — Yg,t
t'=t—Tg

V g, t

V g, t

E pD pR < \--` pa
g,t v

t
bt t  

bE/3 gEg

C2 ,t V g, t

n
g 
G,min

Ygt, "=-• g t < Pga t < Pg 
G,max

Yg,t V g, t-r, — , — 
G,min GG,maxg yg,t < g,t 

Qg 
yg,t g, t

„, QSC,min e- ()SC e- f--)SC,rnax
sc sc,t esc,t `Asc sc,t

t+l—Tg7_±,

g ,r.t E Wg,t' V g, t,
t'=t—Tr,

ttg,t = E (5g ,r,t V 9, t
rEs9

Yg,t Yg,t-1 = Ug,t Wg,t V g, t

V sc, t

+
E P1t,t + E Pif,t + Gghcb,b,t + P611,3't — P9G,t =o

IECtn /eq.' gEgb

E C4,t + E Ce,t — Bghcb,b,t + cg,t — E Q,,t  E Q.,c; = 0
/Ectn legut gEgb scESCb

Pift = Giffeb,b,t Grcb,k,t

Qif,t = f Cb,b,t — B[tcb,k,t

Plt,t = Gitck,k,t Gitf cb,k,t

CA,t = —Brck,k,t Bitf cb,k,t

(Plf,t)2 (Qt,t)2 < (5rtax)2
(114)2 Mt)2 (sir,lax)2

Rfti sb,k,t

— Gift sb,k,t

Bitf sb,k,t

Gtif sb,k,t

1, t

1, t

( < (vr'—)2 b, tvrin)2 < cb,b,t
'b,k,t cb,t,tck,k,t V l, t

1,

1,

1,

1,

t

t

ijaaiti ndoiaal

Laboratories

V b, t

V b, t



Numerical Results: 48 hour look-ahead
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Case Formulation Upper Bound Lower Bound Gap (%) CPU Time (s) Iteration

Case6

MISOCP-Q
MISOCP
MILP-5
MILP-10

1017.63
1017.63
1017.63
1017.63

1017.63
1017.63
1010.56
1017.63

0.0%
0.0%
0.7%
0.0%

10.1
14.6

1116.7
453.5

3
4
30*
9

Case24-1

MISOCP-Q
MISOCP

8953.23
8951 49

8946.80
8947.75

0.1%
0.1%

995
1520

5
7

MILP-5
MILP-10

8209.15
8870.4

5762.8
36000*

30*
1

Case24-2

MISOCP-Q
MISOCP
MILP-5
MILP-10

8863.62
8863.62

8855.38
8854.28
6957.86
8634.28

0.1%
0.1%

846
83

6108.4
36000*

1
1

30*
12

Case118

MISOCP-Q
MISOCP
MILP-5
MILP-10

8357.76
8327.90
8329.13
3984.62
8175.10

0.3%
36000*
5551.0
36000*
36000*

1
1
1
1

MISOCP-Q: relaxation with quadratic cost functions and thermal limits
MISOCP: relaxation with linear under-estimators of cost functions
MILP-5 /10: linear relaxations with different segment points



Power Systems Resilience MI ijaaiti ndoiaal
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Transmission network performance vulnerable to:
Inaccurate demand forecasts

Weather events - transmission element failure

Geomagnetic disturbances

etc.

Optimization formulations for improving resilience:
SP considering demand, weather, GMD uncertainty

N-1 contingency constrained

Adjust operating set point

Perform system hardening or redesign



Contingency-Constrained ACOPF Problem R11!aries
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SAgr-iNi rai 6 _ 1 Alt. 41 Pi.., ir MI Lreril te

Lei Rai'
Ep i! Mtn ria,
' -01110

Nonlinear two-stage stochastic
programming problem

AC power flow model for each
scenario and stage

Contingency scenario for each
transmission line

Penalty for inability to satisfy
demands (infeasibility)

Ramping constraints for changes
in generator set points

Very large-scale nonlinear
programming problem
(Millions of variables)



Building the model with Pyomo and PySP
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Modeling

Power System
Model Formulation

& Solution
System Analysis

LMatpower & OtherInput Format,

Integrated
Python-based

toolchain

William E. Hart
Carl Laird
Jean-Paul Watson
David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

Springer

Hackebeil, Hart, Laird,
Siirola, Watson, Woodruff,

and many others...

Sandia
National
Laboratories

Mr- IPOPAII



Building the model with Pyomo and PySP
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Building the model with Pyomo and PySP

Algebraic
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Schur-IPOPT

Parallel NLP
Solver



Contingency-constrained ACOPF results

Problem data: case118 distributed with Matpower 4.1
- 118 buses, 54 active generators, and 186 branches

ICEI ijaaiti ndoiaal

Laboratories

Multi-scenario problem with 128 scenarios in total
- Normal operating scenario and 127 contingencies
- Problem size: -400,000 variables and -385,000 constraints

Solution obtained in less than 5 seconds

*Wall-clock time from the Red Mesa supercomputing cluster at Sandia National Lab.
Each node: 12 GB RAM, two 2.93 GHz quad-core, Nehalem X5570 processors



Contingency-constrained ACOPF results
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Strong Scaling of Explicit Method in Schur-IPOPT WI i'aaaaries

S
p
e
e
d
u
p
 (
2
 p
r
o
c
e
s
s
o
r
s
 a
s
 b
a
s
e
)
 

512

384

256

128

o
o

••• 1

•.'

t
it
.

•

x Speedup

-- Ideal Speedup

••••

• • 
•

•

1024 Processors,

••
• • 
••
•,• •
•4X

•••

97% efficien

.)4#

ke

••
•#31r

256 512

Number of processors

768 1024



Research Opportunities

Forecasting:
Wind, solar, demand

Generation:
Impact of renewables

Advanced systems for clean, efficient, energy production

IDAES project with NETL

Improved optimization formulations for day-to-day operation
Stochastic unit commitment

Considerations of system nonlinearity - requires global/MINLP strategies

Investigation of different (equivalent) formulations

Optimization formulations for design and operations
Advisory tools for system reliability and resilience

Introduction of new control elements

Optimizing design of storage capabilities

Demand response
Allow for controllable increase/decrease or shaping of demand

Dynamic systems optimization
Include stability criteria and consider reliability rigorously

PM Nationalaldia
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