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ABSTRACT

Radiation transport in stochastic media is a problem found in a multitude of applications,
and the need for tools that are capable of thoroughly modeling this type of problem re-
mains A collection of approximate methods have been developed to produce accurate
mean results but are not capable of quantifying the spread of those results caused by the
randomness of material mixing. In this work, the new stochastic media transport algo-
rithm Conditional Point Sampling is expanded using Embedded Variance Deconvolution
such that it can compute the variance caused by material mixing. The accuracy of this
approach is assessed for 1D, binary, Markovian-mixed media by comparing results to
published benchmark values, and the behavior of the method is numerically studied as
a function of user parameters. We demonstrate that this extension of Conditional Point
Sampling is able to compute the variance caused by material mixing with accuracy de-
pendent on the accuracy of the conditional probability function used.

KEYWORDS: Monte Carlo, Conditional Point Sampling, Parametric Variance, Embedded Variance
Deconvolution, stochastic media

1. INTRODUCTION

For radiation transport problems in stochastic media, an accurate and efficient method that can
be applied to multi-dimensional and multi-material geometries of arbitrary mixing types as well
as characterize the spread of response mean results caused by random material mixing would be
quintessential. Although several well-known approximate methods such as the atomic mix (AM)
approximation and the Levermore-Pomraning (LP) closure, or its Monte Carlo equivalent Chord
Length Sampling (CLS), have been demonstrated to produce mean results for this type of problem
[1,2], there is not yet a method that can accurately compute parametric variance. Materials are
homogenized in the AM approximation, such that there is no longer spread in random mixing to
quantify. Chords of materials are sampled in CLS as the particle streams through the domain, but
the memory of these materials is not retained during the lifetime of the particle. Although there
are memory-enhanced versions of CLS (Algorithm A) [2], these methods are not able to calculate

SAND2019-4288C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



the parametric variance because the realization is not preserved for more than one history. This
preservation is required so that the total and Monte Carlo variances can each be computed.

Conditional Point Sampling (CoPS) uses Woodcock tracking [3] to stream particles to potential
collision sites. The method assigns materials at pseudo-collision sites conditionally on previous
material assignments using conditional probability functions while retaining full memory of the
generated realization [4]. Using imperfect conditional probability functions is the only source of
error since no bias error is introduced by the algorithm itself. We introduced CoPS in Ref. [4] and
examined its accuracy in calculating mean leakage values using two derived conditional probability
functions. We believe that in the special case of 1D, Markovian-mixed media, the second condi-
tional probability function is errorless. In this paper, we use the same two conditional probability
functions and focus on examining the use of CoPS to calculate estimations of the parametric vari-
ance in 1D. In a companion paper, we show that CoPS can extend accurately to multi-dimensional
problems [5] and expect that the variance-computing method used here will straightforwardly port
to multi-D.

To compute parametric variance, we implement Embedded Variance Deconvolution (EVADE) in
CoPS, which was recently developed for computing this value. It requires that more than one parti-
cle history is simulated for a realization with full memory of sampled information [6]. We call this
group of particles simulated per realization a cohort, and we call a group of cohorts a batch. Co-
horts enable computation of the total and Monte Carlo variances. Batches enable computation of
statistical uncertainty on these values. In this paper, the parametric variance results were produced
using only two particle histories per realization in an effort to minimize error. Approximations
are compounded in CoPS such that larger cohorts yield greater error leading to the hypothesis that
error is minimized for the smallest useful cohort size: a size of two. We conduct numerical studies
examining the error behavior as a function of history number in a cohort. The parametric vari-
ance values produced by the CoPS method using our 2-point and 3-point conditional probability
functions are compared against the benchmark method results for the benchmark suites that were
produced in Ref. [1].

2. PROBLEM DESCRIPTION

The stochastic transport equation of interest is
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0 < x < L, —1 < ,u < 1;

0(0, it) = 2, µ > 0,0(L, it) = 0, < 0,

where x is the particle spatial variable, it is the particle angular variable, and w denotes the material
realization. There is an isotropic boundary source with otherwise vacuum boundary conditions and
a domain of length L.

Often, realizations of 1D, Markovian-mixed media are generated by successively sampling chord
lengths starting at a boundary [1]. Here, we present the less-common method we will use in a later
derivation, outlined in Ref. [7], which leverages the fact that the number of "pseudo-interfaces"



in a line randomly sampled from Markovian-mixed media is Poisson-distributed [8]. The average
number of pseudo-interfaces per slab of length r is I = k, where Ac is the correlation length of
the material and A, and Ao are the average chord lengths in materials a and /3 [7]:

A,Ao
A =  (2),

A, + Ao

The frequency of k pseudo-interfaces is then

Ik
f (k, I) = e I —

k!•
(3)

This frequency is used to determine how many pseudo-interfaces are in a particular realization, and
those pseudo-interfaces are distributed in the realization using a uniform distribition in space. The
material in each cell defined by these pseudo-interfaces is then sampled independently according to
the material abundances—unconditional probabilities—for each material. For binary media made
up of materials a and /3, as in this paper, the abundance of material a is computed as

A, 
(4)Pa   

+ Ao

3. CONDITIONAL POINT SAMPLING

Here, we present the Conditional Point Sampling (CoPS) algorithm as well as the 2-point (CoPS2)
and 3-point (CoPS3) conditional probability functions that we derived in Ref. [4] for application
with 1D, binary, Markovian-mixed media. Whereas the CoPS algorithm itself does not introduce
error and is not tied to specific types of stochastic mixing, CoPS requires use of a material-mixing-
specific conditional probability function that in all but special cases must be approximated. In the
case of 1D, Markovian-mixed media, we believe our 3-point conditional probability function is
errorless [4].

3.1. CoPS Algorithm

To begin Conditional Point Sampling, a particle history is initialized by setting the particle with
a position x and direction /J. Distance to boundary, db, and distance to potential collision, de* =
—ln(e), where Et* is the majorant cross section and is a randomly generated number, are

sampled. The distance to the first event is chosen by taking the minimum of db and dc*. If the
particle undergoes a potential collision, the collision is accepted with a probability equal to the
ratio of the true and majorant total cross sections: P„1 = Use of Woodcock tracking enables

particles to stream to potential collisions without needing to know where materials or material
boundaries are located. The following particle history flow summarizes the CoPS algorithm

1. Initialize particle.
2. Sample the distance to potential collision, de*, and distance to boundary, db.
3. Stream particle based on min(de* , db).

(a) If the external boundary is crossed, terminate the particle.



(b) If the particle streams to a potential collision site, sample the material at that point con-
ditionally on already defined points.

4. Sample if potential collision is accepted using P- col•

(a) If the collision is accepted, evaluate collision.

(b) If the collision is rejected, continue to stream particle by returning to step 2.

3.2. 2-Point Conditional Probability Function

Here, we derive the conditional probability of sampling material a at distance r from a point at
which material a or ,(3 exists: 71(Til = f). We compute the Poisson frequency of having no
pseudo-interfaces between the new point and the nearest point and the complimentary frequency
that there is at least one pseudo-interface. In the first scenario, the new point must have the same
material type as the nearest point; in the second scenario, the material type is sampled according
to the unconditional probability (i.e., material abundance). These likelihoods are combined in Eqs.
(5) to derive the conditional probability of the new point being material a as a function of the
distance to the nearest point and the material type of the nearest point:

74711 = = a, r = 7-0 = (1) f (k = 0, r = 7.1) + (Pa) f (k > 0, r = (5a)

R-(m = = 1'1) = (0)f(k = r = rl) (Po)f(k > 0, r = r1) (5b)

These reduce to
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7r(m = = /3, = ri) =

3.3. 3-Point Conditional Probability Function

Pa (1 (6b)

The conditional probability of sampling material a for Markovian-mixed media for a new point
when considering two points, one on each side, is denoted by 7r(m = where rri and
are vectors containing the corresponding material types and distances from each point: m=

{mi, m2} and 77' = r2}. Following the same logic as in the nearest-point derivation, the
Poisson frequency of having no pseudo-interfaces or having at least one pseudo-interface between
the new point and the points on each side are computed for the unique scenarios: a on each side,
= {a, a}; i3 on each side, = /31; and different materials on the sides, = {a, /3}. The

scenario of having material a and material /3 on opposite sides of the new point and having zero
pseudo-interfaces on both sides of the new point is unphysical and therefore invalid. This scenario
does not therefore contribute to 7(m = a Rce, )3}, and the probability contributions must be
normalized by the likelihood of sampling a valid scenario (having at least one pseudo-interface).

7F(Til = fa, al, = (1) f (k = 0, r = ri)f (k = 0, r = r2)
+(1)f(k > 0, r = ri)f (k = 0, r = r2)
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4. EMBEDDED VARIANCE DECONVOLUTION
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To calculate parametric variance, we use the Embedded Variance Deconvolution (EVADE) ap-
proach [9]. This approach is an intrusive implementation for producing the parametric variance
of a mean computed quantity when the Monte Carlo and parametric variance independently con-
tribute to the total variance [9]. In EVADE, the total variance is computed using a history from
each realization, the Monte Carlo variance is computed using more than one history per realiza-
tion, and the parametric variance is the difference in these values. We introduce the concept of
a cohort, which is a group of particle histories in CoPS that have memory of point-wise mate-
rial designations made by each history in the cohort. In this way a cohort successively, but never
fully, samples a realization. Batches of cohorts enable characterization of the uncertainty on these
computed variances.

4.1. Statistical Calculations using Batches and Cohorts

The total variance is the sum of the Monte Carlo variance and the parametric variance as long
as these these values are independent and normally distributed [6]. The parametric variance can
therefore be computed by calculating each of these and taking the difference:

V. = Vtot — Vmc • (9)

The Monte Carlo (sample) variance of a quantity for each cohort i is estimated using

Vmc, = N 1 ((L2)N (L)2Ar) (10)



where L is a leakage quantity, N is the number of histories in the cohort, and moment p of L is
estimated as

N

(LP) N = —
N 

LPn. (11)
n=1

The average Monte Carlo variance for all possible realizations is then estimated as the average over
the number of cohorts, R, in a batch:

R

VMC = VMCi • (12)

The total variance can be similarly calculated using one particle history from each of R cohorts:

R
Vtot = 

R — 1 
((Lz) R — (L)2R) . (13)

We compute the statistical uncertainty on the computed parametric variance using B batches ac-
cording to

u, =
1

B — 1
 (YP2) B — (Vp)B). (14)

We use two histories per cohort to estimate the Monte Carlo variance and only the first history
in each cohort for computing the mean results and estimating the total variance. Using only two
histories per cohort maximizes the number of histories that contribute to the total variance [9] and
we expect that it minimizes the uncertainty in the computed Monte Carlo variance in a way similar
to that shown for the mean in Ref. [6]. In CoPS, error compounds as a function of the number
of points defined, which is a function of the number of histories in a cohort. Therefore, using a
small number of histories per cohort minimizes error in the computed Monte Carlo variance, and
using the first history in the cohort minimizes the error in the computed mean and total variance.
The relationships between error and cohort size and error and history number in the cohort are
numerically examined later in this paper.

5. Results and Analysis

Ref. [1] provides a set of problem parameters for planar geometry from its benchmark suite. The
problem parameters of Tables 10-18 in Ref. [1] are listed in Table 1, where Et,3 is the total cross
section, Aj is the average chord length, and c3 is the scattering ratio for each material j e 0,11.
Only a slab length L = 10 is considered here.

In this paper, relative error is calculated using

X — Xapprox
ER =   (15)

where x is the benchmark value and xapprox is the value produced by the various implementations
of CoPS. The statistical uncertainty of the relative error is propagated using

2 2(Uapprox) XapproxU) ,

X X2 
(16)



Table 1: Benchmark Set Parameters

Case Number Et,o Et,i Ao A1 Case Letter co c1

1 10/99 100/11 99/100 11/100 a 0.0 1.0
2 10/99 100/11 99/10 11/10 b 1.0 0.0
3 2/101 200/101 101/20 101/20 c 0.9 0.9

where xapprox and Uapprox are the mean and statistical uncertainty of the approximate solver and x
and U are the benchmark mean and statistical uncertainty values.

5.1. Leakage Results

In Table 2, the mean reflectance and transmittance results are provided for each case with a slab
length of 10.0 for the benchmark approach (Bench) and the new implementation of CoPS using 2-
point (CoPS2) and 3-point (CoPS3) probability functions. These benchmark values were generated
in Ref. [4] using one history on each of 1E6 realizations and agree with values in Ref. [1]. The
mean leakage results in Table 2 for CoPS2 and CoPS3 were produced using 1E6 particle histories
and 40 batches with a cohort size of two particle histories, and the mean leakage values reported in
the table were calculated by tallying the first particle history per cohort. These CoPS values agree
within uncertainty with those produced without cohorts in Ref. [4]. Statistical uncertainties on the
last digit are given in parentheses.

Figure 1 shows the relative error of CoPS2 and CoPS3 mean leakage results for each case. For
the special case of 1D, binary, Markovian-mixed media, Figure 1 supports that CoPS3 has no bias
error within uncertainty. CoPS2 results show error margins due to the fidelity of the conditional
probability functions used.

5.2. Parametric Variance Results

Table 3 shows the reflectance and transmittance parametric variance results produced by Adams
et al. in Ref. [1] as well as new CoPS2 and CoPS3 results. The CoPS2 and CoPS3 paramet-
ric variance results were generated along with the mean leakage results in Table 2 using 1E6
particle histories and 40 batches with two particle histories for each cohort. Since parametric vari-
ance is computed as the difference in the estimated total and Monte Carlo variances, a relatively
small amount of bias error and/or statistical uncertainty may yield negative parametric variance
estimates. This was the case for one computed value observed in Table 3 under the reflectance
parametric variance for Case 2c using CoPS2.

The relative error of the parametric variance results produced for each case are shown in Figure
2. Similar to what was shown in Figure 1, Figure 2 shows that CoPS3 produces parametric vari-
ance with no bias error within uncertainty, whereas CoPS2 has bias error related to the fidelity of
the conditional probability function used. We note that Case lc values had large relative errors
(plotted), but small absolute errors, possibly less than the uncertainty in the benchmark values.



Table 2: Reflectance and Transmittance Mean Results

Case Reflectance
Bench [4] CoPS2 CoPS3

Transmittance
Bench [4] CoPS2 CoPS3

la 0.4360(5) 0.4379(5) 0.4366(5) 0.0148(1) 0.0156(1) 0.0146(1)
lb 0.0850(2) 0.0716(3) 0.0852(3) 0.00166(4) 0.00141(4) 0.00161(3)
lc 0.4777(4) 0.4592(4) 0.4784(5) 0.0163(1) 0.0159(2) 0.0161(1)

2a 0.2372(4) 0.2438(5) 0.2366(6) 0.0980(2) 0.0974(3) 0.0986(3)
2b 0.2876(4) 0.2534(6) 0.2867(4) 0.1952(3) 0.1721(4) 0.1958(5)
2c 0.4326(4) 0.4174(5) 0.4343(5) 0.1870(3) 0.1807(4) 0.1866(4)

3a 0.6904(4) 0.6956(6) 0.6908(6) 0.1639(3) 0.1617(4) 0.1625(4)
3b 0.0363(1) 0.0292(2) 0.0358(2) 0.0762(2) 0.0628(3) 0.0751(4)
3c 0.4451(4) 0.4336(5) 0.4458(5) 0.1042(3) 0.0956(3) 0.1036(4)
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Figure 1: Reflectance and transmittance mean relative error and uncertainty for each case.

5.3. Effects of Cohort Size on Monte Carlo Variance Accuracy

Here, we investigate how the accuracy of the Monte Carlo variance behaves according to the num-
ber of particle histories in each cohort using a total of 1E6 particle histories and 40 batches on
two benchmark problems. We use a cohort size of 2, 5, 10, and 25 particle histories to estimate
the Monte Carlo variance and tally the first particle history in each cohort to the compute the total
variance. Numerical results are shown in Table 4. Relative error is plotted in Figure 3. This ap-
proach holds the error in the total variance constant while increasing the error in the Monte Carlo
variance. The overall error (and statistical uncertainty) increase as a function of cohort size.
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Table 3: Reflectance and Transmittance Parametric Variance Results

Case Reflectance
Bench [1] CoPS2 CoPS3

Transmittance
Bench [1] CoPS2 CoPS3

1 a 0.02611 0.0246(3) 0.0264(4) 0.00023 0.0009(1) 0.0003(1)
lb 0.00486 0.0060(2) 0.0047(3) 0.00015 0.00027(4) 0.00012(4)
lc 0.00001 0.0001(5) 0.0006(3) 0.00038 0.0016(1) 0.0009(1)

2a 0.08180 0.0092(3) 0.0823(4) 0.00787 0.0092(3) 0.0079(3)
2b 0.02660 0.0274(5) 0.0261(4) 0.06508 0.0550(3) 0.0656(4)
2c 0.00327 -0.0006(3) 0.0030(3) 0.04554 0.0443(3) 0.0449(4)

3a 0.06838 0.0650(4) 0.0684(3) 0.03028 0.0302(3) 0.0308(3)
3b 0.00250 0.0037(2) 0.0030(2) 0.05072 0.0403(3) 0.0497(3)
3c 0.00852 0.0037(4) 0.0083(4) 0.05244 0.0476(3) 0.0527(3)

Reflectance Parametric Variance Relative Error

la lb lc 2a 2b 2c 3a 3b 3c
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Transmittance Parametric Variance Relative Error
4

3

2

1

o

1

2

3

4
la lb lc 2a 2b 2c 3a 3b 3c

Case

CoPS2 CoPS3

Figure 2: Reflectance and transmittance parametric variance relative error and uncertainty
for each case.

5.4. Effects of Particle Index on Mean and Total Variance Accuracy

Here, we investigate how the accuracy of the mean and total variance behave according to the
particle histories' order in a realization. We tallied particles 1, 2, 5, 10, or 25 in each cohort
to calculate mean and parametric variance values using 1E6 particle histories with 25 particles for
each cohort and 40 batches for Cases 2b and 3a. Numerical results are provided in Table 5 and error
is plotted in Figure 4. This approach holds the error in the Monte Carlo variance constant (yielded
by a cohort size of 25) while increasing the error in the mean and total variance computations.



Table 4: Reflectance and Transmittance Parametric Variance Results of Cohort Size
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Figure 3: Reflectance and transmittance parametric variance relative error and uncertainty
based on cohort size for Cases 2b and 3a.

Because material points are defined conditionally on neighboring material points, error is com-
pounded as a function of number of material points defined. When many points are defined in a
cohort, a realization is mostly sampled and error compounding slows resulting in an error plateau.
Figure 4 captures the behavior of the mean and total variance estimates based on which history
in each cohort is tallied for Cases 2b and 3a. The mean and parametric variance values shown in
Table 5 were benchmarked against mean leakage results produced in Ref. [4] and variance results
produced in Ref. [1].

6. CONCLUSIONS

Embedded Variance Deconvolution (EVADE) was implemented in Conditional Point Sampling
(CoPS) enabling CoPS to compute parametric variance. The accuracy of this method was assessed
using a 2-point and a 3-point conditional probability function on a set of binary Markovian-mixed
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Figure 4: Reflectance and transmittance mean and parametric variance relative error and
uncertainty based on index of particle tallied in cohort for Cases 2b and 3a.

Table 5: Reflectance and Transmittance Mean and Parametric Variance Results of Indexed
Particle History

Case Leakage Index
1 2 5 10 25

Mean 2b Ref. 0.263(2) 0.243(2) 0.236(2) 0.231(2) 0.231(2)
Trans. 0.189(1) 0.155(1) 0.133(1) 0.1292(9) 0.129(1)

3a Ref. 0.682(2) 0.715(2) 0.718(2) 0.717(2) 0.724(2)
Trans. 0.1714(6) 0.1461(6) 0.1406(8) 0.1372(7) 0.1322(8)

Parametric 2b Ref. 0.0340(9) 0.0255(9) 0.021(1) 0.019(1) 0.019(1)
Variance Trans. 0.075(1) 0.054(1) 0.037(1) 0.036(1) 0.034(1)

3a Ref. 0.0596(8) 0.047(1) 0.044(1) 0.045(1) 0.043(1)
Trans. 0.039(1) 0.022(1) 0.018(1) 0.016(1) 0.012(1)

media problems from the benchmark suite described in Ref. [1]. Batches of cohorts were used
to compute statistical uncertainty on quantities of interest. Results generated using CoPS3 had no
statistically significant error. Numerical studies were conducted to assess the accuracy of CoPS2
results as a function of the number of successive particle histories that retain memory of defined
material points. Error from this non-errorless 2-point conditional probability function was shown
to compound as a function of cohort size strengthening our hypothesis that smaller cohort sizes are
more accurate.

In future publications, we hope to improve the efficiency and possibly accuracy of the method
using biased Woodcock Tracking [3]. While CoPS has been demonstrated to compute mean values



in multi-dimensional, Markovian-mixed media [5], we plan to implement EVADE in our multi-
D implementation of CoPS. We also hope to apply CoPS to non-Markovian and multi-material
mixing.
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