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Part I:
Chemical controls on subcritical fracture
in calcite
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Theory of subcritical fracture

Griffith theory:

U= (UE_WL)+US
the internal energy of the system (U), the
elastic potential energy (Uy), the external work

(W), the energy from the added surface area
of the crack (Uy) [1].

Constitutive modeling of subcritical crack growth:

Reaction rate theory

T E-vo
in () =a - (%)
T, RT
Where 1 1s reaction rate, , and a - empirically
determined constants, R — gas constant, T —
absolute temperature, 0,.1s the reaction site stress,

* * . .
and £ and v are apparent activation energy and
activation volume.

Atkinson and Meredith, 1987

Increasing
p(H,0)

log crack velocity

Schematic stress intensity factor/crack velocity
diagram for tensile crack growth by stress
corrosion. Kic is the fracture toughness and Ko
is the stress corrosion limit [2].

<.y¢@ RegionIl [3]

[1] Griffith, 1921 [3] Hwangbo et al., 2014
[2] Atkinson, 1984




Subcritical fracture in calcite

* FPractures can propagate through intergranular cement, or through mineral grains. Calcite (CaCOs)
cement is common in sandstones and mudrocks;

* Previous studies on subcritical fracture in calcite show that:
* Activity of H,O controls weakening of chalk !l
* Dissolution at fracture tip controls fracture growth 127
* Changes in surface energy control fracture propagation 7!

* In NaCl and NH,Cl both weakening (faster fracture growth) and strengthening (fracture arrest)
are observed [°

[1] Risnes et al., 2005 [3] Royne et al., 2011 [5] Dunning et I, 1994
[2] Atkinson, 1984 [4] Dunning et al., 1994 [6] Rostom et al., 2012




Project objectives and approach

To develop a mechanistic understanding of the chemical processes at the fracture tip in
calcite and their control on subcritical fracturing,

Calcite Indentation, Vickers tip, 400 mN Vickers tip

20x Objective 100x Objective a,b diagonal lengths
o 7
. ‘

b

Pyramidal Diamond Cone

Image from:
http:/ /www.weldpedia.com/2014/10/macroscopic-and-
microscopic-examination.html

* Laboratory experiments to measure fracture propagation rate zz situ as a function of
chemical composition of the fluid;

* Single crystal calcite (100) indented using Vickers indenter tip at 400 mN force;

* Fractures are imaged 7 situ using optical microscope Nikon Eclipse 801 and SPOT 7.2
camera.




Results: fracture propagation

Crystal structures visualized using

' VESTA 3 (M d lzumi, 2011).
Colcﬁe(]OO) , (Momma and Izumi )

‘Pt Rhombohedral cleavage

ligen, et al., 2018

Scientific Reports, 8, 164656.




Results: fracture growth rate

Hydrofracturing fluid
=
. :
N

15 min

Indent + fracture, microns

DI H,0
FF, pH 2.1
FF, pH 3.0
FF, pH 4.1
FF, pH 5.0
FF, pH 5.7
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Synthetic hydrofracturing fluid: 0.01 vol.% Polyacrylamide; 0.05 vol.% Sodium polyacrylate; 0.1 vol.% Sodium chloride; 0.02 vol.%
Methanol; 0.01 vol.% Hydrochloric acid; 0.007 vol.% Tetrakis(hydroxymethyl)phosphonium sulfate, 99.8 vol.% DI water.




Results: fracture growth rate
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100 |[2] , ,"”‘i

Indent + fracture, microns

DI H,0

HCI, pH 2.1
HCI, pH 3.1
HCI, pH 3.8
HCI, pH 4.2
HCI, pH 5.3

60 —

o0+ )»m

]
50 100 150 200
Time, min

Indent + fracture, microns

100 —

60 —

H,SO,

il TNINERNEEAE

DI H,O

H,SO,pH 1.2
H,SO, pH 2.0
H,SO,pH 3.0
H,SO,pH 3.8
H,SO, pH 4.4
H,SO,pH 4.5

o0+ )DH)>Onm

| | | |
50 100 150 200
Time, min

e propagation rate of subcritical fracture measured 77 situ varied from 1. -
* The propagat te of subcritical fract d in sit d from 1.6x1078

m st to 2.4X1019 m s,




Resulis: what controls fracture growth?
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* Propagation rate of fracture in calcite 1s dependent on the anion,




‘ Results: what conirols fracture growth?
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* No correlation between the dissolution rate of calcite and subcritical fracture growth.
* Positive correlation between pCa and pH for all examined reactors; pCa = -log,,[Ca**];

* No correlation observed between pCa (proxy for the &-potential) and fracture
propagation rates.
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Cayqa, Moles in the reactor

Species, moles in the reactor

Resulis: what controls fracture growth?
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Results: surface morphology and
fracture toughness
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Fracture toughness [

=i () xT

a)

* The estimated fracture toughness
g prior to iz situ fracture growth

experiment was

0.10 — 0.16 MPa m'/?

* Fracture toughness at the end of
the fracture growth experiment
decreased by

0.01-0.05 units.

* The fracture width, measured on the surface of the sample, increased with decreasing pH,
in agreement with enhanced calcite surface dissolution with decreasing pH.

[1] Lawn and Cook, 2012




15‘ Results: Conceptual model

_(001) surface

Breaking Ca-CO; bond
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Part Il:
Shale-brine-CO, interactions and the long-
term stability of carbonate-rich shale caprock

~ Mancos Shale
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Geochemical response triggered by the
: injection of CO,

* At geologic storage PT: CO, is supercritical (scCO,).

+ scCO, stimulates geochemical responses: acidification of parent brine, and dehydration
of mineral surfaces.!->8

« Experimental and field studies: geochemical reactions differ significantly for different
rock assemblages and brine compositions.””

* Low-permeability caprocks (shale) are reactive at the higher end of the geologic carbon
storage temperature range.!% 11

» Dissolution and secondary mineral precipitation control the evolution of porosity and
permeability 8, with potential impact on the caprock integrity, and CO, leakage.10.12

= [ Deformation ]
Pore pressure ,
— [ Fluid displacement ] [ Volume ]

; 2 [ Mineral alteration ]
Chemistry
[1] DePaolo et al., 2013 [4] Kobos et al., 2011 [7] Bickle et al., 2013 [10] Liu et al., 2012
[2] Marini, 2006 [5] Steele-Maclnnis et al., 2012 [8] Jun et al., 2012 [11] Kaszuba et al., 2003

[3] Kharaka and Cole, 2011 [6] Gilfillan et al., 2009 [9] Lu et al., 2012 [12] Harvey et al., 2012




Heterogeneous natural shale
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Shale on glass slide
Wagner Petrographic

100% Carbonate

4
"ty

* Petrography
* Micro-XRF > |
*  Micro-XRD § §°°~/ Mudstone | Siliceous

Calcareous
Mudstone

°°"e m:rlston' \
e Bulk XRE, XRD ‘
ligen, et al., 2018 /7 me e

Int. J. Greenh. Gas Contr. 78, 244-253. —
100% Clay




Project objectives
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Establish quantitative relationships between chemical reactions triggered by the

addition of supercritical CO, and changes in micro-scale mechanical properties
of shale.

0 50 100 150
pixels

200

* Laboratory experiments on shale samples at conditions typical of GCS to
understand time-dependent geochemical reactions.

* Geochemical modeling for data interpretation.

e Micro-mechanical characterization to understand chemical effects on
mechanical properties in heterogeneous shale caprock.




‘ Shale alteration in brine-CO, mixtures

—

Sands]bne ,

Stirred reactors pressurized with CO,
Control reactors — pressurized with N, or
buffered by ambient atm

Powdered shale (Agpr = 8.3 m? g'!) + brine
Sample brine and solids at time intervals
Analysis by IC, ICP-MS, and XRD
Geochemical modeling




Results: mineralogy changes
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Fracture Toughness: Scratch Test
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Mancos shale: Conclusions
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Low pCOZ reactor:

CaCO;yy + 2H" — Ca?" + H,CO;4

CaMg(CO3)y + 4H" — Ca?" + Mg*" + 2H,CO;
Ca?* + SO + 2H,0 — CaSO,.2H,0

Ca** + H,CO; — CaCO; + 2H"

High pCO, reactor:

CaCOs + 2H" — Ca %" + H,CO,4

CaMg(COy)y + 4H" — Ca " + Mg " + 2H,CO;4
Mg** + H,CO; — MgCO; ) + 2H”

Ca?* +80O,> — CaSO, , + 2H"
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Thank you.




Calcite dissolution kinetics

Calcite dissolution rates

log rate (mol/cm?/s)

pH

Arvidson et al. (2003) Geochimica et Cosmochimica Acta, 67, 8, 1623

Initial (incorrect) hypothesis:
Propagation rate of fracture is controlled by the dissolution rate of calcite




Experiment matrix

Hz?(;ofracturing pH=5.72 | pH=5.02 | pH=4.07 | pH=3.02 | pH=2.07 | pH=1.08
HCl pH=5.25 | pH=4.18 | pH=3.77 | pH=3.12 | pH=2.13 | pH=1.21
H,S0, pH=4.41 | pH=4.53 | pH=3.78 | pH=3.04 | pH=2.04 | pH=1.35
H,C,0, pH=6.78 | pH=5.26 | pH=3.88 | pH=3.07 | pH=2.12 | pH=1.49

Calcite (100)

« Samples: 2 x 2 mm, CaCO3 (100)
« Opticalimagingin situ

ligen, et al., 2018

Scientific Reports, 8, 164656.
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Reactor Fracture
length (initial),

. microns
6.5 89.2
6.5 82.0
6.5 73.6
4.1 83.8

3.8 67.5
- 3.8 73.0
- 4.1 72.7

Table S1. Calculated fracture toughness before and after exposure to aqueous solutions. The uncertainty in fracture toughness

Fracture length

(final), microns

98.8

99.1

93.4

96.0

84.5

75.0

99.0

c?

(initial),

microns

44.6

41.0

36.8

41.9

33.8

36.5

36.4

c 2 (final),

microns

49.4

49.6

46.7

48.0

42.3

37.5

49.5

T b) (initial),

MPa m1/2

0.10+0.01

0.12+0.01

0.14+0.02

0.11£0.01

0.16+0.02

0.14£0.02

0.14+0.02

T ®) (final),

MPa m'/2

0.09+0.01

0.09+0.01

0.10+0.01

0.09+0.01

0.11£0.01

0.14£0.02

0.09+0.01

value is +0.01-0.02 (shown in parenthesis with each calculated T value), calculated at 26 (95% confidence level).

Notes:
+C is calculated as % of the full fracture length
*T is fracture toughness




