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41 Part I:
Chemical controls on subcritical fracture

in calcite
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Theory of subcritical fracture

Griffith theory:

U = (UE - WL) + Us
the internal energy of the system (U), the

elastic potential energy (UE), the external work
(WL), the energy from the added surface area

of the crack (Us) [1].

Constitutive modeling of subcritical crack growth:

Reaction rate theory

ln(Lr) = a
(E -v ars)

RT

Where r is reaction rate, r, and a - empirically

determined constants, R - gas constant, T -

absolute temperature, ars is the reaction site stress,

and E and V are apparent activation energy and

activation volume.
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Schematic stress intensity factor/crack velocity
diagram for tensile crack growth by stress
corrosion. Kic is the fracture toughness and Ko
is the stress corrosion limit [2].

Region 11 [3]

[1] Griffith, 1921 [3] Hwangbo et al., 2014
[2] Atkinson, 1984
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Subcritical fracture in calcite

• Fractures can propagate through intergranular cement, or through mineral grains. Calcite (CaCO3)
cement is common in sandstones and mudrocks;

• Previous studies on subcritical fracture in calcite show that:

• Activity of H20 controls weakening of chalk [1]

• Dissolution at fracture tip controls fracture growth [2,3]

• Changes in surface energy control fracture propagation [4, 5]

• In NaC1 and NH4C1 both weakening (faster fracture growth) and strengthening (fracture arrest)
are observed [6]

[1] Risnes et al., 2005
[2] Atkinson, 1984

[3] Royne et al., 2011 [5] Dunning et I., 1994
[4] Dunning et al., 1994 [6] Rostom et al., 2012
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Project objectives and approach

To develop a mechanistic understanding of the chemical processes at the fracture tip in

calcite and their control on subcritical fracturing.

Calcite Indentation, Vickers tip, 400 mN Vickers tip

Q .1
Pyramidal Diamond Cone

a,b diagonal lengths

b

Image from:
http.//www.weldpedia.com/2014/10/macroscopic-and-
microscopic-examination.html

• Laboratory experiments to measure fracture propagation rate in situ as a function of

chemical composition of the fluid;

• Single crystal calcite (100) indented using Vickers indenter tip at 400 mN force;

• Fractures are imaged in situ using optical microscope Nikon Eclipse 80i and SPOT 7.2
camera.
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Results: fracture propagation

Crystal structures visualized using I
VESTA 3 (Momma and lzumi, 201 1).

b

Calcite (100)
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!igen, et al., 2018 
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Results: fracture growth rate
pH 5
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Synthetic hydrofracturing fluid: 0.01 vol.% Polyacrylamide; 0.05 vol.% Sodium polyacrylate; 0.1 vol.% Sodium chloride; 0.02 vol.%

Methanol; 0.01 vol.% Hydrochloric acid; 0.007 vol.% Tetrakis(hydroxymethyl)phosphonium sulfate, 99.8 vol.% DI water.
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Results: fracture growth rate
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• The propagation rate of subcritical fracture measured in situ varied from 1.6x10-8
m s-1 to 2.4x10-10 m 1.
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Results: what controls fracture growth?
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• Propagation rate of fracture in calcite is dependent on the anion.
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• No correlation between the dissolution rate of calcite and subcritical fracture growth.

• Positive correlation between pCa and pH for all examined reactors; pCa = -logthiCa2+1;

• No correlation observed between pCa (proxy for the -potential) and fracture

propagation rates.
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a)

c)

Results: surface morphology and
fracture toughness 

b)
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Fracture toughness [11:
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• The estimated fracture toughness

prior to in situ fracture growth

experiment was

0.10 — 0.16 MPa m1/2

• Fracture toughness at the end of

the fracture growth experiment

decreased by

0.01-0.05 units.

• The fracture width, measured on the surface of the sample, increased with decreasing pH,
in agreement with enhanced calcite surface dissolution with decreasing pH.

1

1
1
1

[1] Lawn and Cook, 2012
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Results: Conceptual model

(001) surface (001) surface

Breaking Ca-0O3 bond •

CO3
*
/Ck, IR • PIO .

HCO3 L
/ \ 4

/Ck,
iCk

>Ca-OH + H2CO3 -> >Ca-0O3 + H± + H20

>Ca-OH + HC1 --> >Ca-C1 + H20

>Ca-OH + H2SO4 -> >Ca-SO4 + H± + H20

7E-09

al 6E-09
E
a; 5E-09
co
_c' 4E-09

-  3E-09
bp
2 2E-09
=

0 1E-09
u_

0

0

1 I 1

100 200

Complexation constant



16 1

Part 11:
Shale-brine-0O2 interactions and the long-

term stability of carbonate-rich shale caprock

Mancos Shale

Pi*
wcMEs

\Ill 111 1111 II l



COiinjection
,W;At

144

Shale Caprock

Sandston 

-401 004
oon1

11.1111.1111,4

k-Feldspar

Dolomite

Via 
.4* ..•..- '7.-, :-, 

-. /141.: -', • - 1.1. ' ''.SR*, - -
. 4 ii►,.. - '' - ' . ' - Z ' -...1'''7 4 . A . . 44k , ..• WICO''.: ! . '-7- . ' - - ' ' '. -' OW i la ili,IIP ''.011P''''.41.0 ' a 4filli0 4 .i.' ''
• Ili* - - . UP 1000 •.."-',...III 

14740a141Witfta.040141101*MAW2140141M".111141"Allik
"8,10411480"4

,40"ftWOMOWW,WW*140ftWaleArkifteftWAMOK44.-1. -._ et. •I . • • - - - -

''... '    .&'   
arigrittarrytatialt..' latbilkatiterrAratageralartaitte 4wa';iiiiipi ralfleitirearairearretelealirrittellarj

111r40011141,0 "1011*40111% A0111104011°41,110.440"41011111140"004,1010 WA00,01" 11010110!ftaiti MAPOPO,A,OMMAII.4,1ReOTIftWIONVIMW,0040*_

Quartz

Calcite 

Kaolinite

Ankerite

Dawsonite

All

Shale Caprock

41111 ilk
precipitation

issolut
• 

lra1°11111111410:- .11tp
•;

‘‘‘‘‘‘‘'"Ilk4164**a.



18 1

Geochemical response triggered by the
injection of CO2  !

• At geologic storage PT: CO2 is supercritical (scCO2).

• scCO2 stimulates geochemical responses: acidification of parent brine, and dehydration
of mineral surfaces.1-3, 8

• Experimental and field studies: geochemical reactions differ significantly for different
rock assemblages and brine compositions.7-9

• Low-permeability caprocks (shale) are reactive at the higher end of the geologic carbon
storage temperature range.10,11

• Dissolution and secondary mineral precipitation control the evolution of porosity and
permeability 8, with potential impact on the caprock integrity, and CO2  leakage.1o,12

* Stress

Pore pressure

Temperature

Chemistry *
Deformation

Fluid displacement

Mineral alteration

[1] DePaolo et al., 2013 [4] Kobos et al., 2011 [7] Bickle et al., 2013 [10] Liu et al., 2012
[2] Marini, 2006 [5] Steele-Maclnnis et al., 2012 [8] Jun et al., 2012 [11] Kaszuba et al., 2003
[3] Kharaka and Cole, 2011 [6] Gilfillan et al., 2009 [9] Lu et al., 2012 [12] Harvey et al., 2012

1
1
1
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Heterogeneous natural shale

• Petrography

• Micro-XRF

• Micro-XRD

• Bulk XRF, XRD

!igen, et al., 2018

Shale on glass slide
Wagner Petrographic
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Int. J. Greenh. Gas Contr. 78, 244-253.
100% Clay
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Project objectives

histablish quantitative relationships between chemical reactions triggered by the

addition of supercritical CO2 and changes in micro-scale mechanical properties

of shale.

200

a, 180
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L/ 120

100
0 50 100 150

pixels

• Laboratory experiments on shale samples at conditions typical of GCS to

understand time-dependent geochemical reactions.

• Geochemical modeling for data interpretation.

• Micro-mechanical characterization to understand chemical effects on

mechanical properties in heterogeneous shale caprock.
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Shale alteration in brine-0O2 mixtures

2500 psi CO2, 90 °C

fCO2

Shale Caprock

till WA
q‘,, w pH

1trecipitation ar,4 4,',4 I at
5 jib.

1,i' dissolution

100 psi CO2, 90 °C

• Stirred reactors pressurized with CO2

• Control reactors — pressurized with N2 or

buffered by ambient atm

• Powdered shale (ABET = 8.3 m2 g-1) + brine

• Sample brine and solids at time intervals

• Analysis by IC, ICP-MS, and XRD
• Geochemical modeling
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Results: mineralogy changes

Mineral Calcite Albite Dolomite Muscovite

p, g cm-3 2.71 2.62 2.84 2.82

Hardness 3 7 3.5 - 4 2 - 2.5

Mineral Calcite Gypsum Magnesite Gibbsite

p, g cm-3 2.71 2.3 3 2.42

Hardness 3 2 4 3

Alteration by CO2-brine mixture

maybe causing net decrease in density

and hardness.

Does this have consequences for

micro-mechanical properties?

10 20 30 40 50

Degrees 2 theta

60 70
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Fracture Toughness: Scratch Test
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Mancos shale: Conclusions

Low pCO2  reactor:

CaCO3(s) + 2H+ Ca 2+ H2CO3

CaMg(CO3)2(S) + 4H+ —> Ca 2+ + Mg 2+ 2H2CO3

Ca2+ + S042- + 2H20 —> CaSO4 . 2H20 (s)

Ca 2+ H2CO3 —± CaCO3 (s) + 2H+

High pCO2  reactor:

CaCO3(,) + 2H+ Ca 2+ + H2CO3

CaMg(CO3)2(S) + 4H+ —> Ca 2+ + Mg 2+ 2H2CO3

Mg2+ + H2CO3 MgCO3 (s) + 2H+

Ca 2+ + s042- —> CaSO4 (s) + 2H+
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Thank you.
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Calcite dissolution kinetics

Calcite dissolution rates
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Arvidson et aI. (2003) Geochimica et Cosmochimica Acta, 67, 8, 1623

Initial (incorrect) hypothesis:
Propagation rate of fracture is controlled by the dissolution rate of calcite
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Fractures

El
• Samples: 2 x 2 mm, CaCO3 (100)
• Optical imaging in situ

Ilgen, et al., 2018
Scientific Reports, 8, 164656.
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Reactor pH Fracture

length (initial),

microns

Fracture length

(final), microns

c a)

(initial),

microns

c a) (final),

microns

T b) (initial),

MPa m1/2

T b) (final),

MPa m1/2

DI H20 6.5 89.2 98.8 44.6 49.4 0.10±0.01 0.09±0.01

DI H20 6.5 82.0 99.1 41.0 49.6 0.12±0.01 0.09±0.01

DI H20 6.5

4.1

73.6 93.4 36.8 46.7 0.14±0.02 0.10±0.01

FF 83.8 96.0 41.9 48.0 0.11±0.01 0.09±0.01

HC1 3.8

3.8

67.5 84.5 33.8 42.3 0.16±0.02 0.11±0.01

H2SO4 73.0 75.0 36.5 37.5 0.14±0.02 0.14±0.02

C2H204 4.1 72.7 99.0 36.4 49.5 0.14±0.02 0.09±0.01

Table sl. Calculated fracture toughness before and after exposure to aqueous solutions. The uncertainty in fracture toughness
value is ± 0.01-0.02 (shown in parenthesis with each calculated T value), calculated at 26 (95% confidence level).
Notes:
•C is calculated as 1/2 of the full fracture length
•T is fracture toughness


