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3 1 Interfacial chemistry under nano-scale confinement

Emergent chemical behavior due to nano-scale confinement:

» Decreased dielectric constant!?, surface tension3, and density of water.2
* Decreased solvation energies of metal cations.*

* Increased inner sphere coordination of metal cations.?

* Enhanced metal adsorption>, modified redox’ and diffusion properties.??
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IMarti et al., J. Phys. Chem. B (2006) “4Kalluriet al., J. Phys. Chem. C (2011) ’Mattia and Calabro, Microfliud Nanofluid (2012)
2Senapati et al., J. Phys. Chem. B (2001) SWang et al., Geology (2003) 8Samsom and Biggin, Nature (2001)

3Takei et al., Colliod Polym. Sci. (2000) 6Zimmerman et al., Environ. Sci. Techol. (2004) 8Ma et al., JACS (2019)




«1 Adsorption of Cu?* on Mesoporous Silica
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Fig. 2 Adsorption isotherm plots showing the adsorption of Cu on mesoporous materials. a Cu adsorption on SBA-15-4. b Cu adsorption on i
SBA-15-6 and ¢ Cu adsorption on SBA-15-8 fit with Langmuir, Freundlich and Dubinin-Radushkevich isotherm models NE ‘;097”::"
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. - . * Fig. 4 Surface area normalize adsorption of Cu versus time in
The pseudo-first-order reaction rate constant increased with R D
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External mass transfer diffusion constant increases with
decreasing pore size: this rapid film diffusion in 4 nm pores is
responsible for the observed increase in adsorption rate. Knight, et al., 2018
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Research Goals ]

Chemistry under Nano-scale Confinement

= Effect of pore size on adsorption and coordination of adsorbed species.

= Effect of confinement on water properties.
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Research goal

= Quantify the impact of ionic radii and hydration
energies on ion adsorption and ion coordination
chemistry under nano-scale confinement.

Zhangq, et al., 201

Inorganic Chemistry 53, 7700-77



« | Chemistry of lanthanides

IUPAC Periodic Table of the Elements 18
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Approach
« Single lanthanide adsorption kinetics and isotherms.

* Mixed lanthanide system - competitive adsorption.

« XAS for assessing coordination chemistry of lanthanides. Piasecki and Sverjensky, 2
‘ ADb initio MD for mechanistic insight. Geochimica et Cosmochimica Acta 72, 3964-397

1 Huang (2011)



71 Methods

Batch experiments

X-ray Absorption Spectroscopy (XAS)

EXAFS spectroscopy instrumental setup
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s I Results: adsorption isotherms

« For both SBA-15-4 nm and SBA-15-8 nm with increasing Z uptake increased.
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2

Uptake, pm/m

s I Results: Pore-size (in)dependence

« Eu®* uptake is consistent with Cu?* results: higher uptake on 4nm, compared to 8nm pores.
« Tm3* and Lu®* uptake appears independent of pore size.
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10 | Results: Competitive adsorption
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* Increased uptake with increasing Z and decreasing ionic radii.
« Higher uptake on 4 nm- vs 8 nm-silica, but below non-porous SiO,.




11 1 XAFS: preliminary results for neodymium

1. Nd-SBA-8nm| 1. Nd-SBA-Snml ﬂ
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12 | XAFS: preliminary results for lutetium

Transform Magnitude

21.Lu-SBA-8nm |

21.Lu-SBA-8nm| « 1%t shell fit with one Lu-O
distance;

 Same Lu-O bond length for
non-porous SiO,, and for
SBA-15 with 4 nm and 8 nm
pores.

Transform Real

Uncorrected distance, A

Transform Magnitude

Uncorrected distance, A

22.Lu-SBA-4nm 8

Transform Real

Uncorrected distance, A Uncorrected distance, A




13 1 XAFS: difference between Nd and Lu
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Hydrolysis of H,O molecule as Lu(lll) desorbs from
“ 1 silica surface

OH- formation

R o 07(water) / ( -
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~ -~ >

.Jr —~
9 o

Lu(lll) desorbs ) -

«ab initio molecular dynamics (AIMD) simulations + umbrella sampling to force desorption; ‘
Lu(lll) desorption causes H,O + SiO- => OH- + SiOH;
*Previous AIMD simulations of this silica model predict pKa =7 - 8.1;

Combined with thermodynamic data Lu(llll) hydrolysis of water is reasonable; need to check
whether there are any system size effects;

So far Eu(lll) not observed to cause hydrolysis, but simulations at early stage.



1 Summary and future work

Adsorption of lanthanides onto confined surfaces

Mass-dependent adsorption: with decreasing ionic radii, increased uptake.

Pore-size dependency:

-2130 kJ/mol -3278 kJ/mol

|
Cu?* AG, N AG,, -
|
|

* Macroscopically, for heavier elements (Lu3* and Tm?3*) uptake is independent
of pore size, for lighter lanthanides SBA with 4 nm pores has higher uptake.

- XAS data supports macroscopic trends: differences in the local coordination
environment for lighter lanthanides, and no differences for heavier lanthanides.

Work in progress

» Fitting XAS data.

« Examine other substrates, e.g. controlled-pore glass.

* Finalize ab initio models.




16

Thank you.




17

Extra slides




18 | Results: Kinetics of adsorption
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