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3 Interfacial chemistry under nano-scale confinement

Emergent chemical behavior due to nano-scale confinement:

• Decreased dielectric constant1-2, surface tension3, and density of water.3

• Decreased solvation energies of metal cations.4

• Increased inner sphere coordination of metal cations.4

• Enhanced metal adsorption5-6, modified redox7 and diffusion properties.8,3

TEM images, P. Lu

;x44.::,4=

MD model, J. Greathouse

1Marti et al., J. Phys. Chem. B (2006)
2Senapati et al., J. Phys. Chem. B (2001)
3Takei et al., Colliod Polym. Sci. (2000)

4Kalluri et al., J. Phys. Chem. C (2011)
5wang et al., Geology (2003)
6Zimmerman et al., Environ. Sci. Techol. (2004)

7Mattia and Calabro, Microfliud Nanofluid (2012)
8Samsom and Biggin, Nature (2001)
81Vla et al., JACS (2019)



4 Adsorption of Cu2+ on Mesoporous Silica

Cu2+ adsorption isotherms
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Flg. 2 Adsorption isot herrn plots showing the adsorption of Cu on mesoporous materials. a Cu adsorption on SBA-15-4. b Cu adsorption on
SBA-1 5-6 and c Cu adsorption on SBA-15-8 fit with Langmuir, Freundlich and Dubinin-Radushkevich isotherm models

• Nano-scale confinement enhances both the adsorption
maximum, and Cu2+ adsorption reaction rate.

• The pseudo-first-order reaction rate constant increased with
decreasing pore size.

• External mass transfer diffusion constant increases with
decreasing pore size: this rapid film diffusion in 4 nm pores is
responsible for the observed increase in adsorption rate.

Cu2+ adsorption kinetics
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Fig. 4 Surface area normalize adsorption of Cu versus time in
minutes for a SBA-15-4, b SBA-15-6, and c SBA-15-8. The final
equilibrium concentrations are shown for each line

Knight, et al., 2018 
Geochemical Transactions 19, 13-26



5IResearch Goals

Chemistry under Nano-scale Confinement

Effect of pore size on adsorption and coordination of adsorbed species.

Effect of confinement on water properties.
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Research goal 
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6 Chemistry of lanthanides
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Approach 

• Single lanthanide adsorption kinetics and isotherms.

• Mixed lanthanide system - competitive adsorption.

• XAS for assessing coordination chemistry of lanthanides.

• Ab initio MD for mechanistic insight.

Lanthanides

• Have large and variable
coordination numbers (CN)1.

• Coordination number vary from 3
to 12, the most common CN=81.

• Crystal structures differ for light
(Z=57-63) and heavy (Z=64-71)
elements'.

Y3' adsorbed to the rutile (110) surface and
forms a tetranuclear surface complex.

Piasecki and Sverjensky, 2
Geochimica et Cosmochimica Acta 72, 3964-397

1 Huang (2011)



7 Methods

Batch experiments
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8 Results: adsorption isotherms

• For both SBA-15-4 nm and SBA-15-8 nm with increasing Z uptake increased.
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9 Results: Pore-size (in)dependence

• Eu3+ uptake is consistent with Cu2+ results: higher uptake on 4nm, compared to 8nm pores.

• Tm3+ and Lu3+ uptake appears independent of pore size.
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10 Results: Competitive adsorption
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• Increased uptake with increasing Z and decreasing ionic radii.

• Higher uptake on 4 nm- vs 8 nm-silica, but below non-porous Si02.
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11 XAFS: preliminary results for neodymium
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distances;

• Nd-O bond length:
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12 XAFS: preliminary results for lutetium
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8nm SBA

4nm SBA

13 XAFS: difference between Nd and Lu
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Hydrolysis of H20 molecule as Lu(III) desorbs from
14 silica surface

Okwater)

Lu(III) desorbs

OH- formlatio

F

•

•ab initio molecular dynamics (AIMD) simulations + umbrella sampling to force desorption;

•Lu(III) desorption causes H20 + Si0- -> OH- + SiOH;

•Previous AIMD simulations of this silica model predict pKa = 7 - 8.1;

•Combined with thermodynamic data Lu(IIII) hydrolysis of water is reasonable; need to check
whether there are any system size effects;

•So far Eu(III) not observed to cause hydrolysis, but simulations at early stage.



1, I Summary and future work

Adsorption of lanthanides onto confined surfaces

• Mass-dependent adsorption: with decreasing ionic radii, increased uptake.

• Pore-size dependency:

Cu2+ AGH
I -2130 kJ/mol

Nd3+ AGH
-3278 kJ/mol

1
1
1
1
1

Tm3+ AGH
-3509 kJ/mol

Lu3+AGH
-3556 kJ/mol

• Macroscopically, for heavier elements (Lu3+ and Tm31 uptake is independent
of pore size, for lighter lanthanides SBA with 4 nm pores has higher uptake.

• XAS data supports macroscopic trends: differences in the local coordination
environment for lighter lanthanides, and no differences for heavier lanthanides.

Work in progress 

• Fitting XAS data.

• Examine other substrates, e.g. controlled-pore glass.

• Finalize ab initio models.
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18 Results: Kinetics of adsorption
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Preliminary results 

• 2nd order reaction.

• For Eu3+ and Lu3+, on 8 nm pores adsorption
is slightly more favorable and faster.

• For Tm3+ the trend is the same as for Cu2+:
faster and more favorable adsorption onto 4
nm, compared to 8 nm pores.


