

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND NO. 2017-XXXXP

- The Bayesian Perspective:
 - Probability distributions quantify uncertainty due to insufficient information
 - Bayesian methods for identification and estimation are critical to robust decision-making
- Target Contribution:
 - Take a Bayesian approach to waveform processing to detect and identify seismic events while integrating various sources of uncertainty to quantify confidence while identifying weak signals
 - Use a unique statistical framework and novel computational methods to make waveform-based Bayesian inference tractable
- General Approach:
 - Formulate an inference problem based upon predicting waveform features instead of the waveforms themselves
 - Simulate waveforms to build a statistical model of waveform features along with sources of feature uncertainty
 - Use Sequential Tempered Markov Chain Monte Carlo to efficiently identify events

Talk Outline

1. Overview of Bayesian Inference and MCMC
2. Formulation of Seismic Monitoring as a Bayesian Inference Problem
3. Feature-Based Bayesian Inference
4. Building the Feature-Based Inference Workflow
5. Example with synthetic data
6. Future work and Conclusion

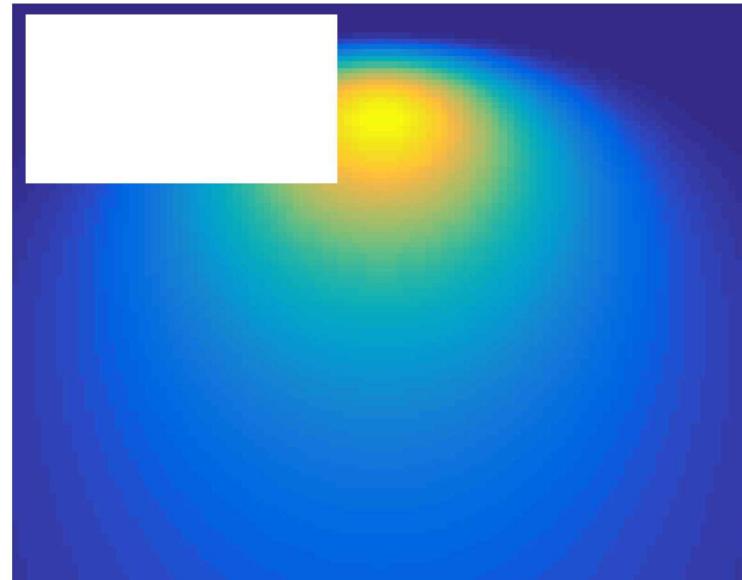
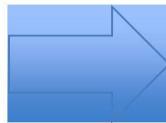
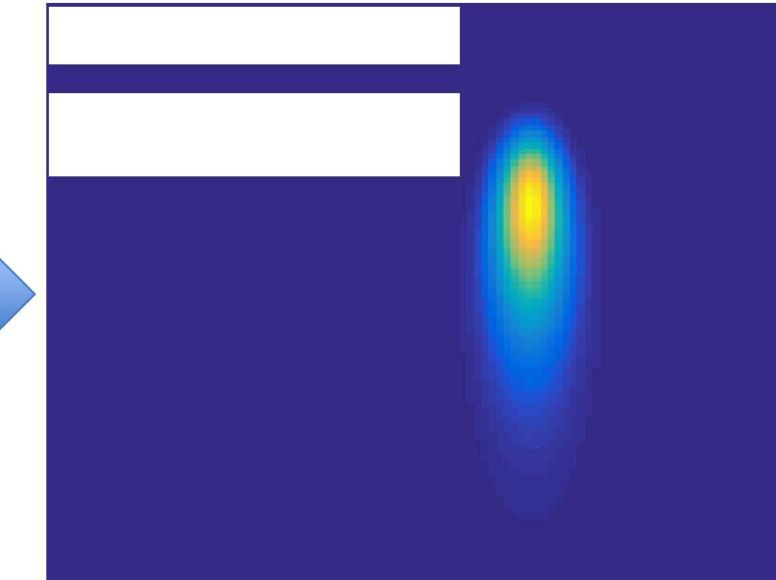
BAYESIAN INFERENCE AND MARKOV CHAIN MONTE CARLO

The Bayesian Inference Problem

Observations: \mathcal{D}

Bayes' Theorem

$$p(\theta | \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta, \mathcal{M})p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})}$$

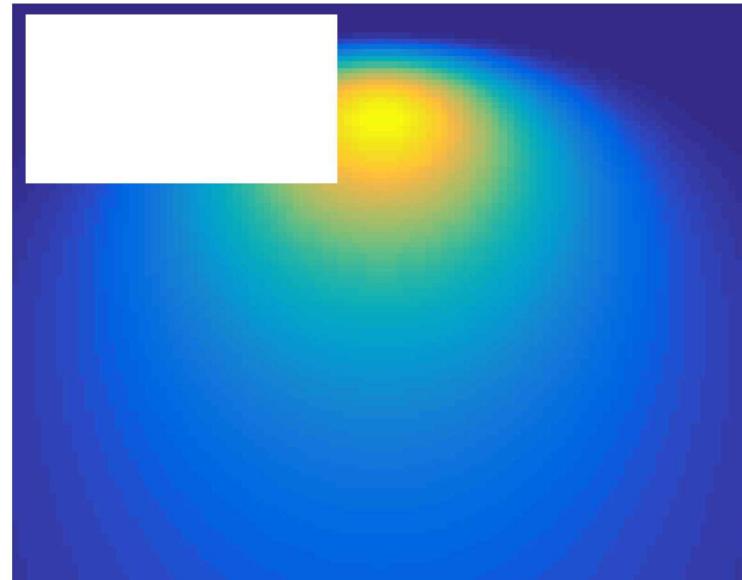
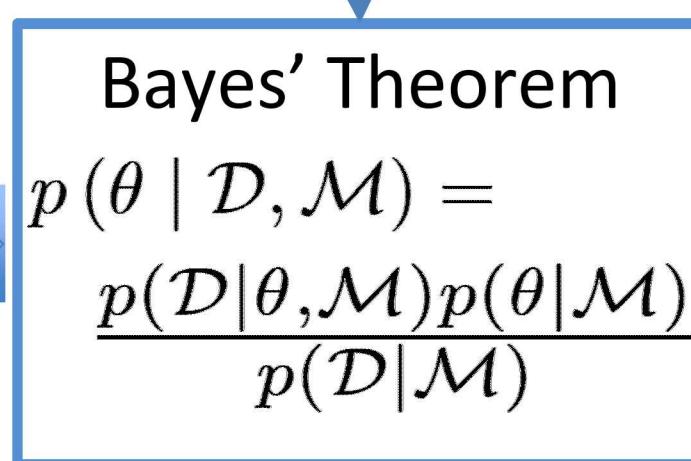
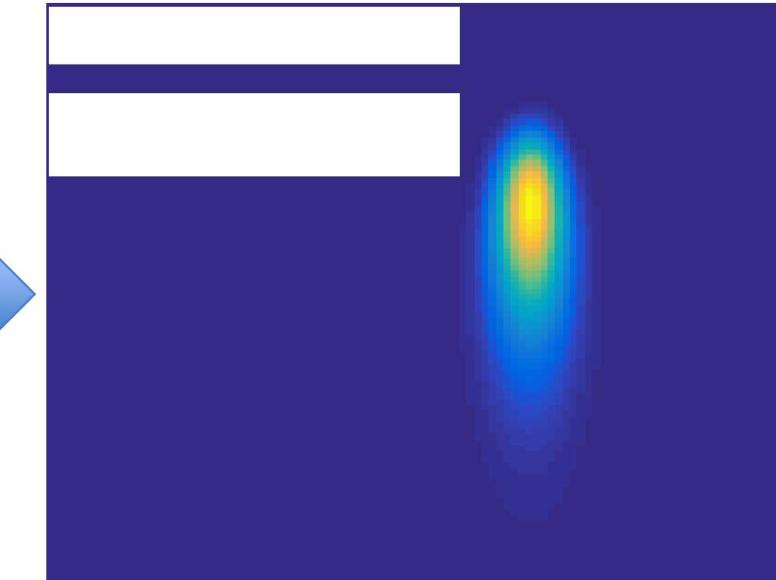


The Bayesian Inference Problem

Observations: \mathcal{D}

Bayes' Theorem

$$p(\theta | \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D} | \theta, \mathcal{M}) p(\theta | \mathcal{M})}{p(\mathcal{D} | \mathcal{M})}$$

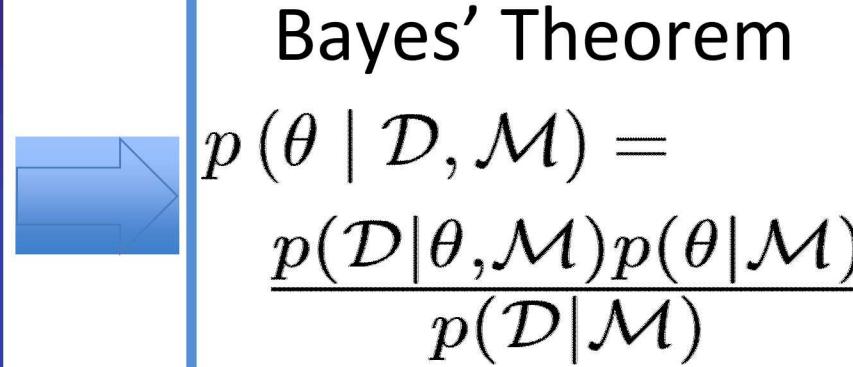


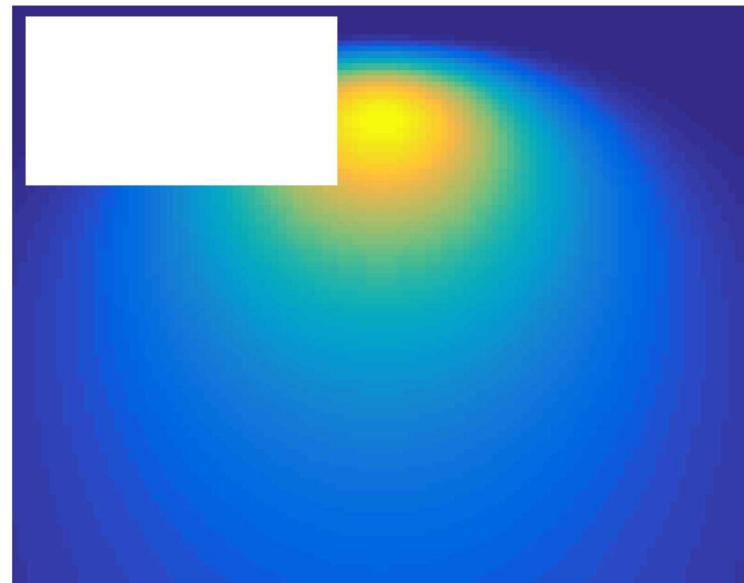
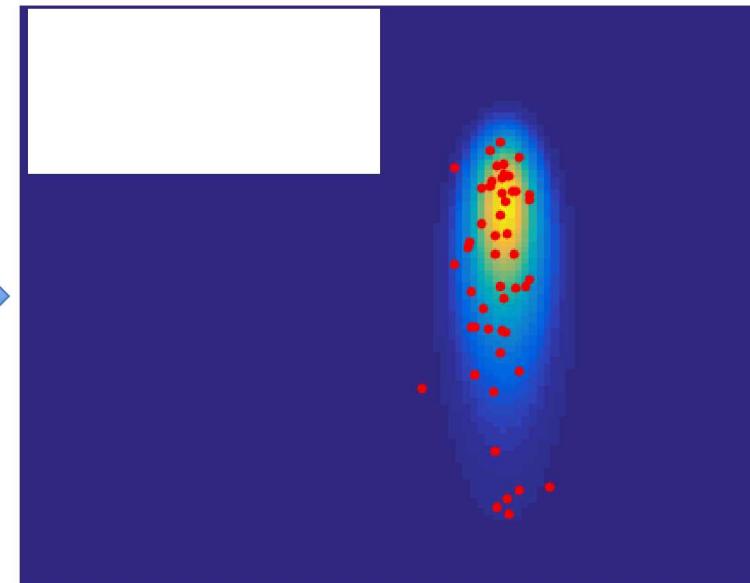
$$p(\mathcal{D} | \mathcal{M}) = \int p(\mathcal{D} | \theta, \mathcal{M}) p(\theta | \mathcal{M}) d\theta$$

Intractable

The Bayesian Inference Problem

Observations: \mathcal{D}


$$\text{Bayes' Theorem}$$
$$p(\theta | \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta, \mathcal{M})p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})}$$



Posterior Estimation:

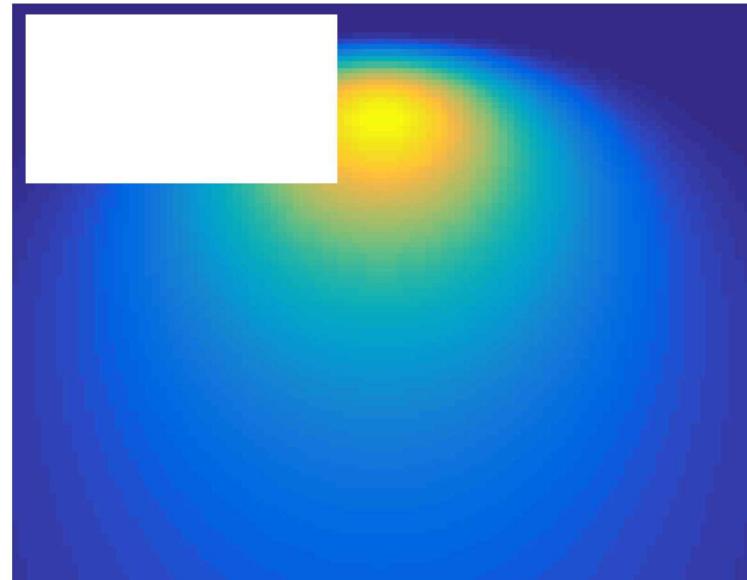
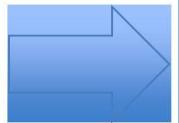
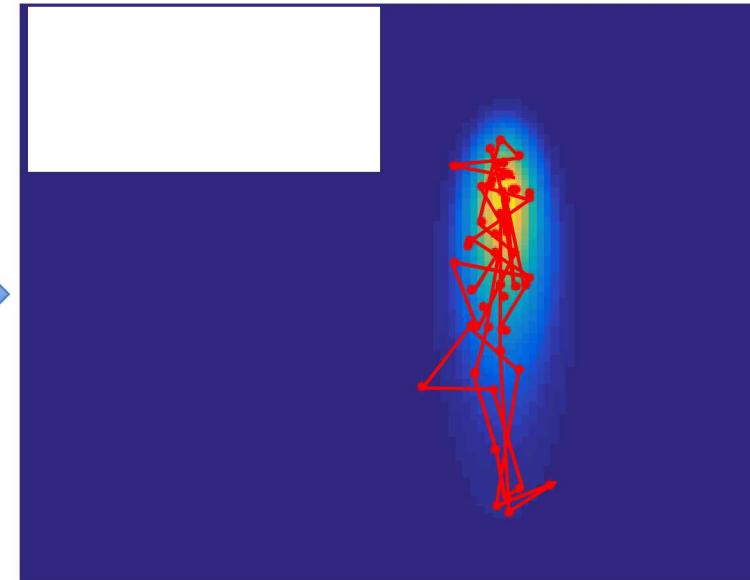
$$\mathbb{E}[g(\theta) | \mathcal{D}, \mathcal{M}] = \int g(\theta) p(\theta | \mathcal{D}, \mathcal{M}) d\theta \approx \frac{1}{N} \sum_{i=1}^N g(\theta_i)$$

The Bayesian Inference Problem

Observations: \mathcal{D}

Bayes' Theorem

$$p(\theta | \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta, \mathcal{M})p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})}$$

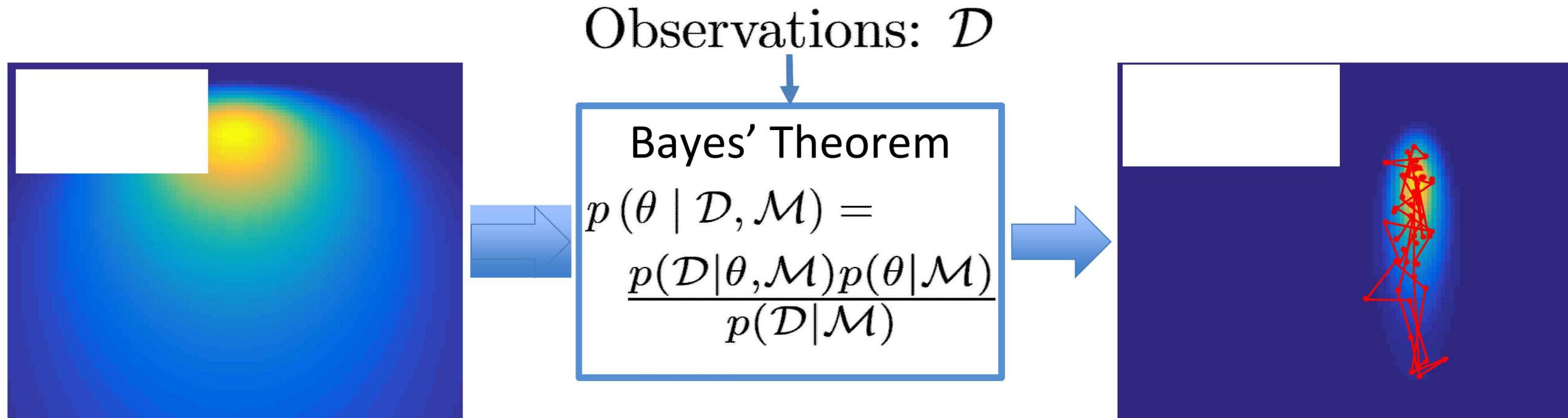


Exploration of the space
by proposal distribution

Accept/Reject
correction

Metropolis-Hastings
MCMC

The Bayesian Inference Problem

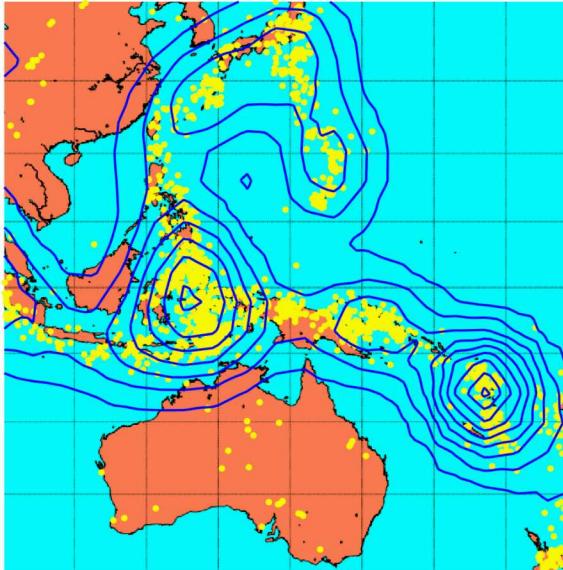


$$\mathbb{E}[g(\theta) | \mathcal{D}, \mathcal{M}] = \int g(\theta) p(\theta | \mathcal{D}, \mathcal{M}) d\theta \approx \frac{1}{N} \sum_{i=1}^N g(\theta_i)$$
$$ESS[g(\theta_{1:N})] = \frac{var[g(\theta)]}{var\left[\frac{1}{N} \sum_{i=1}^N g(\theta_i)\right]}$$

BAYESIAN INFERENCE FOR SEISMIC EVENT LOCALIZATION

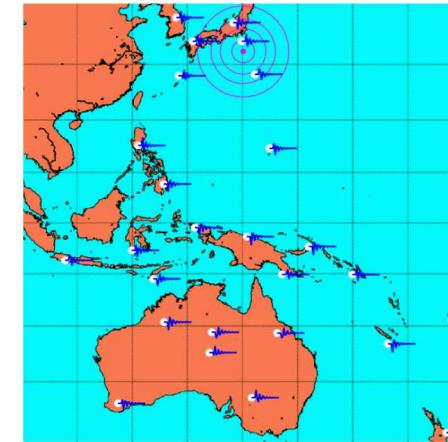
The Bayesian Framework

Prior: $p(\theta)$



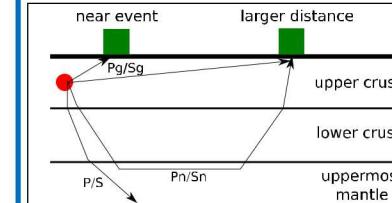
Knowledge about where events are likely to occur

Data: \mathcal{D}



Likelihood: $p(\mathcal{D} | \theta)$

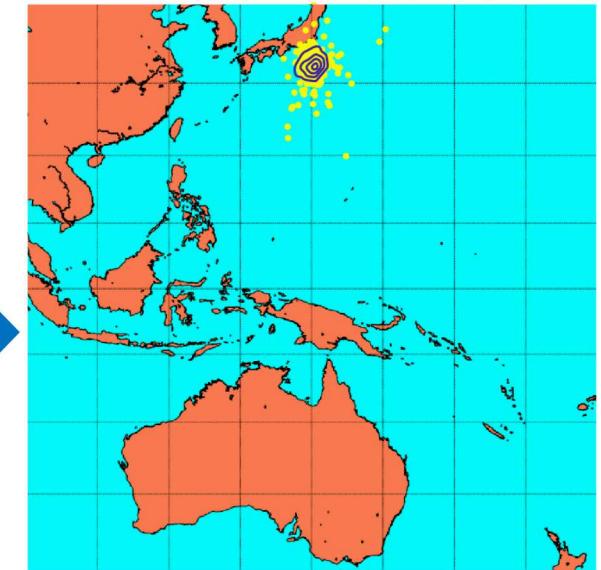
Physics Model
Sensor Model
Uncertainty Model



Bayes' Theorem:

$$p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})}$$

Posterior: $p(\theta | \mathcal{D})$



Updated knowledge about where a specific event occurred

Detection-Based

- Description
 - Each station pre-processes their observed waveforms to extract arrival “picks”
 - The likelihood of an event (or events) is based upon how well the observed arrival times correspond to arrivals from seismic waves generated by the event hypothesis
 - Arrival time and detection uncertainty can be integrated into the model
- Examples: BayesLoc¹, NET-VISA²
- Advantages
 - Requires only a model of travel-time and not the waveform
- Disadvantages
 - Events that produce weak signals below the pick threshold cannot be detected, even when many sensors are combined

¹Myers, S. C., Gardar Johannesson, and Robert J. Mellors. “BayesLoc: A robust location program for multiple seismic events given an imperfect earth model and error-corrupted seismic data” (2011)

²Arora, Nimar S., Stuart Russell, and Erik Sudderth. "NET-VISA: Network processing vertically integrated seismic analysis" (2013)

Signal-Based

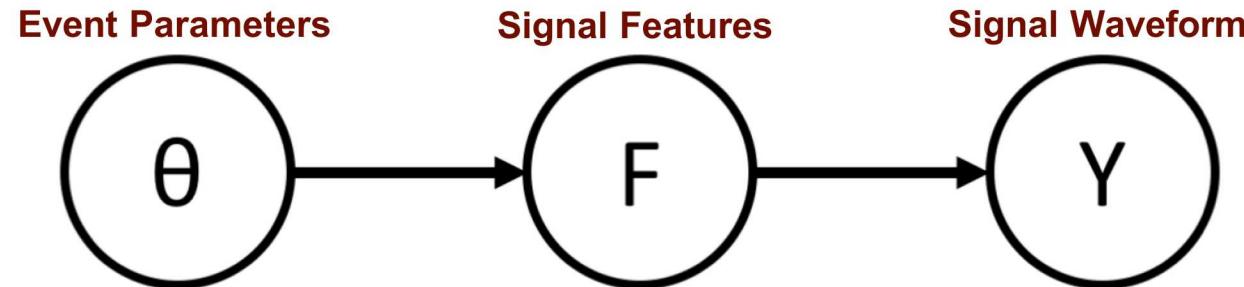
- Description
 - The likelihood of a candidate event (or events) is based upon comparing predicted waveforms given the event hypothesis, noise process, and other modeled uncertainty to the observed waveforms
- Example: SIG-VISA³
- Advantages
 - Can integrate many sensors to detect low magnitude signals
 - Waveform characteristics can contain useful information for event identification
- Disadvantages
 - Requires learning and evaluating a generative model of the full waveform to compute the likelihood of the observed signal

³Moore, David A., and Stuart J. Russell. "Signal-based Bayesian seismic monitoring" (2017)

FEATURE-BASED INFERENCE

Defining feature-based inference

Graphical Model:



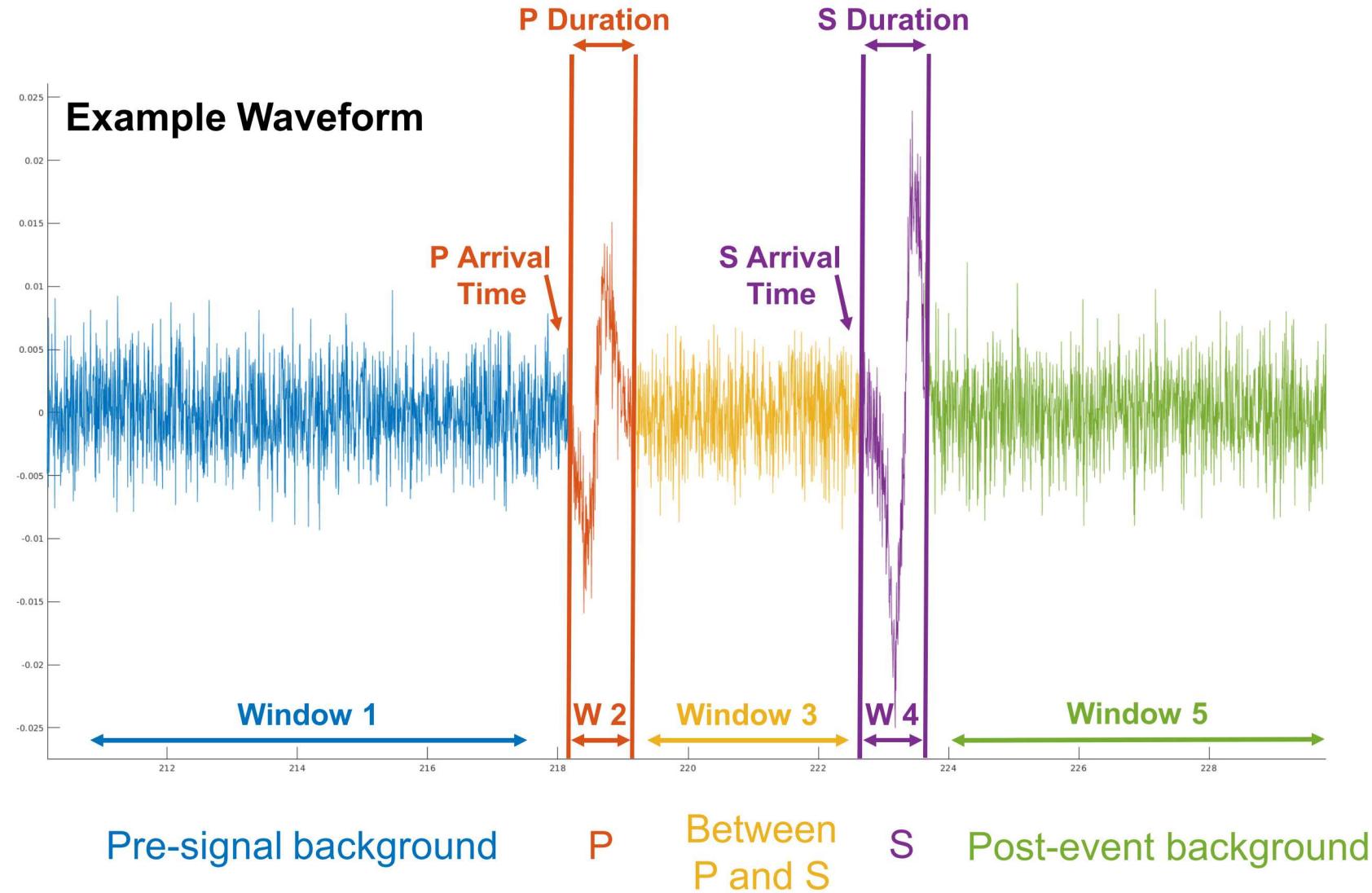
Bayesian Inference:

- Feature-based inference requires building statistical models for the likelihood of a signal given certain features and the likelihood of those features given an hypothesized event parameterization

$$\underbrace{p(\theta | Y)}_{\text{Posterior}} = \frac{\underbrace{p(Y | \theta) p(\theta)}_{\text{Likelihood Prior}}}{\underbrace{p(Y)}_{\text{Evidence}}} = \left(\int \underbrace{p(Y | F) p(F | \theta)}_{\text{Signal Likelihood Feature Likelihood}} dF \right) \underbrace{\frac{p(\theta)}{p(Y)}}_{\text{Marginalize over features}}$$

Feature Based Inference for Seismic Monitoring

- Waveform Features
 - P and S arrival time
 - Waveform feature within window e.g. total signal power
- P and S arrival times and uncertainty can be found using models like AK135
- We can build a statistical model for the signal power using simulations and background models



Waveform Likelihood based on arrivals and signal power feature

Bayesian Inference:

$$\begin{aligned}
 \text{Posterior} & \quad \text{Prior} & \text{Features: P and S Arrivals and Window Powers} \\
 p(\theta | Y) & \propto p(\theta) \int p(Y | t_p, t_s, P_{1:5}) p(t_p, t_s, P_{1:5} | \theta) dt_p dt_s dP_{1:5} \\
 & = p(\theta) \int \underbrace{p(Y_{1:5} | t_p, t_s, P_{1:5})}_{\text{Uniform}} \underbrace{p(P_{1:5} | t_p, t_s, \theta)}_{\text{Simulations and Background process}} \underbrace{p(t_p, t_s | \theta)}_{\text{Travel time model}} dt_p dt_s dP_{1:5}
 \end{aligned}$$

Assuming conditional independence:

$$p(Y_{1:5} | t_p, t_s, P_{1:5}) = \prod_{i=1}^5 p(Y_i | t_p, t_s, P_i)$$

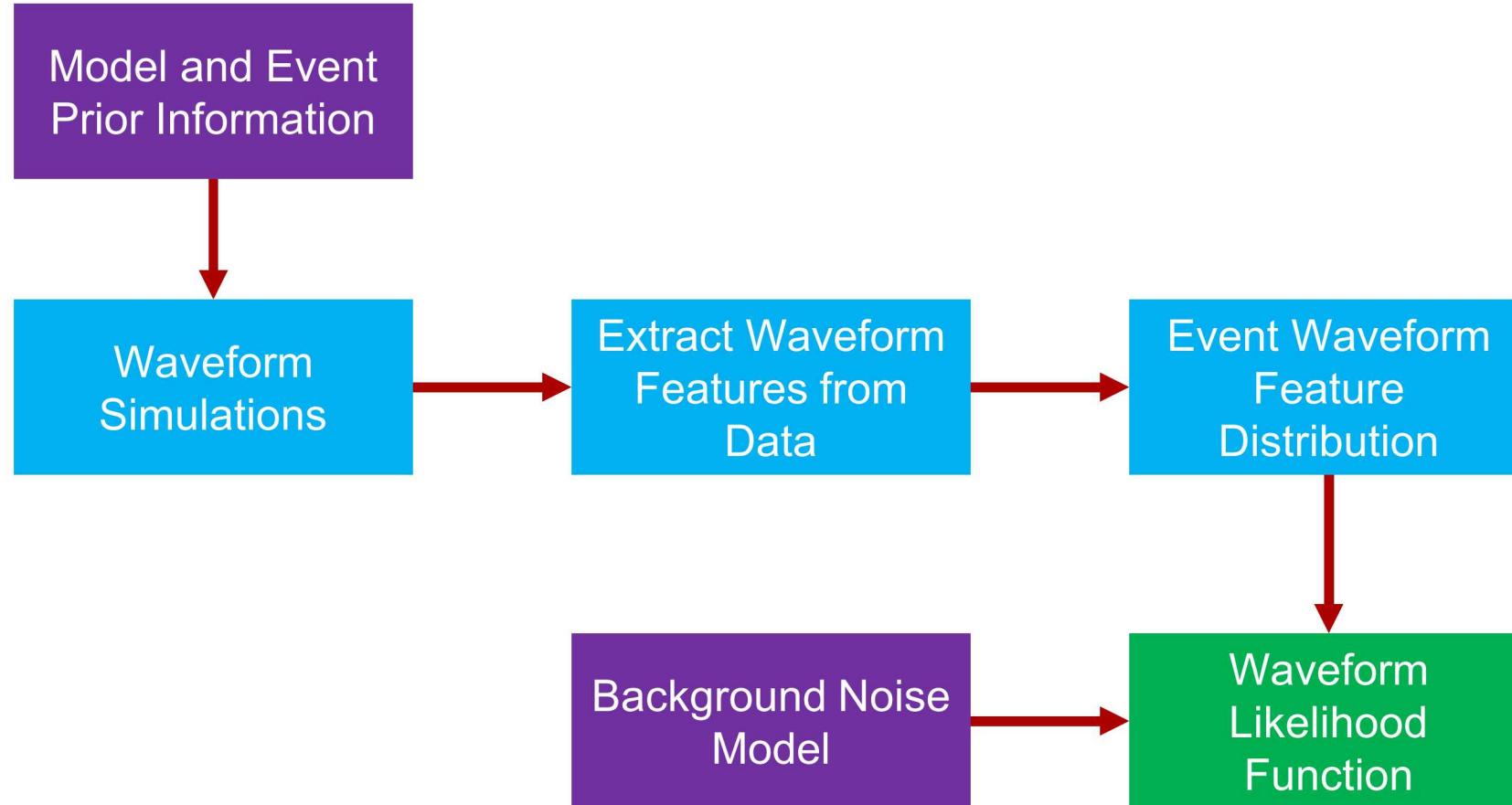
Uniform waveform distribution conditioned on features:

$$p(Y | t_p, t_s, P) = \frac{1}{\int \delta(Y^T Y - P) p(Y) dY} \propto \frac{\Gamma\left(\frac{n}{2}\right)}{\pi^{\frac{n}{2}} P^{\frac{n}{2}-1}}$$

Quantifies the size of the signal space with given features

BUILDING FEATURE-BASED WORKFLOW

Data driven workflow



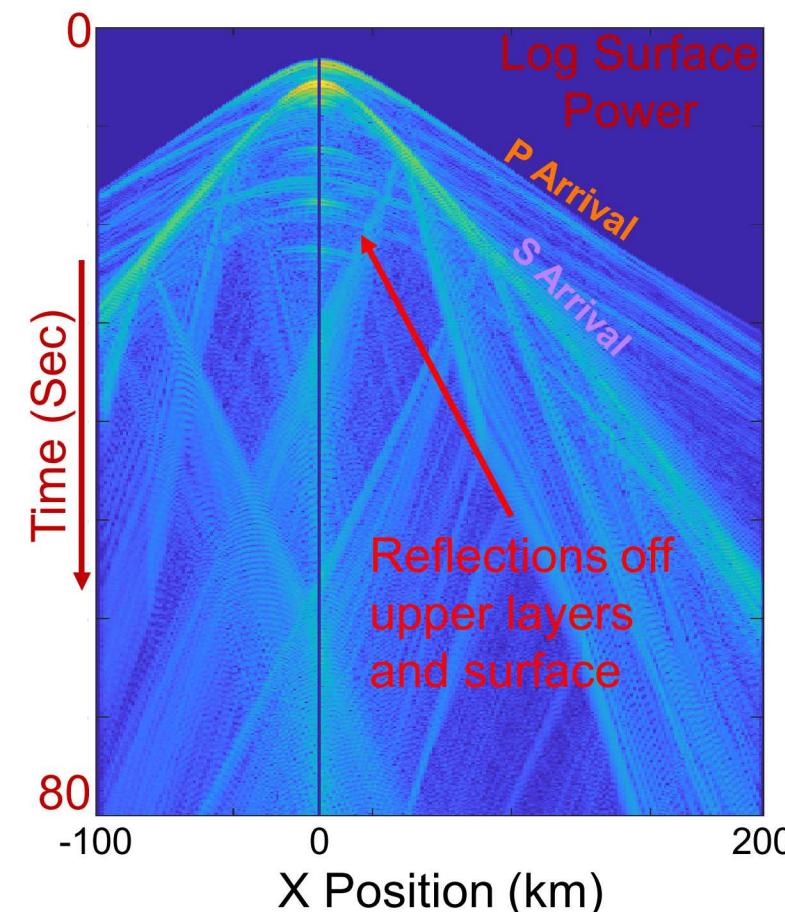
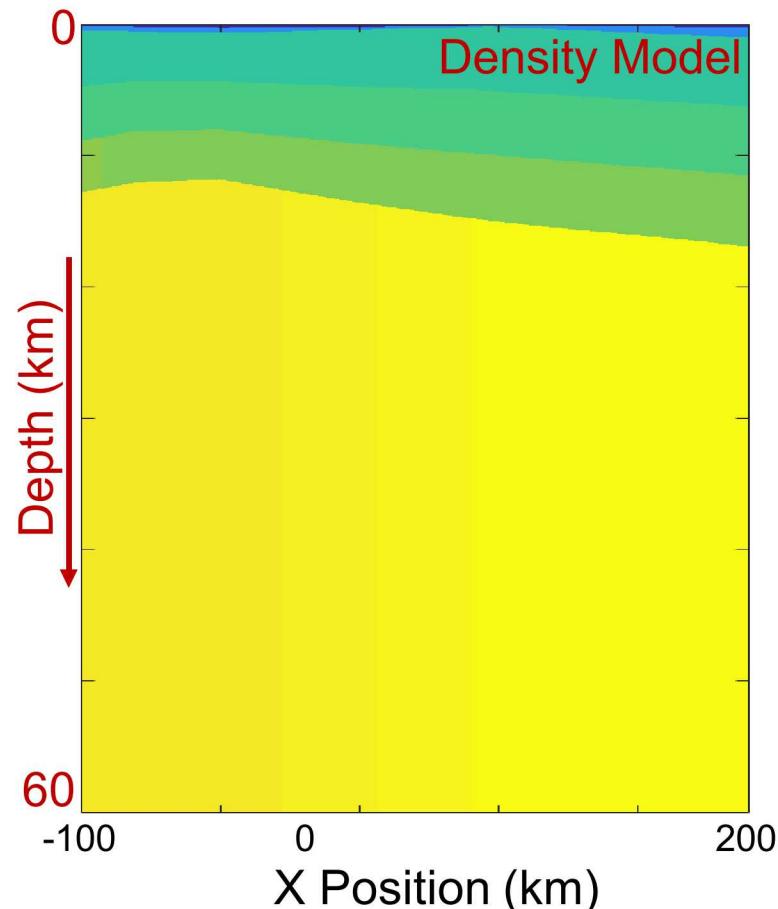
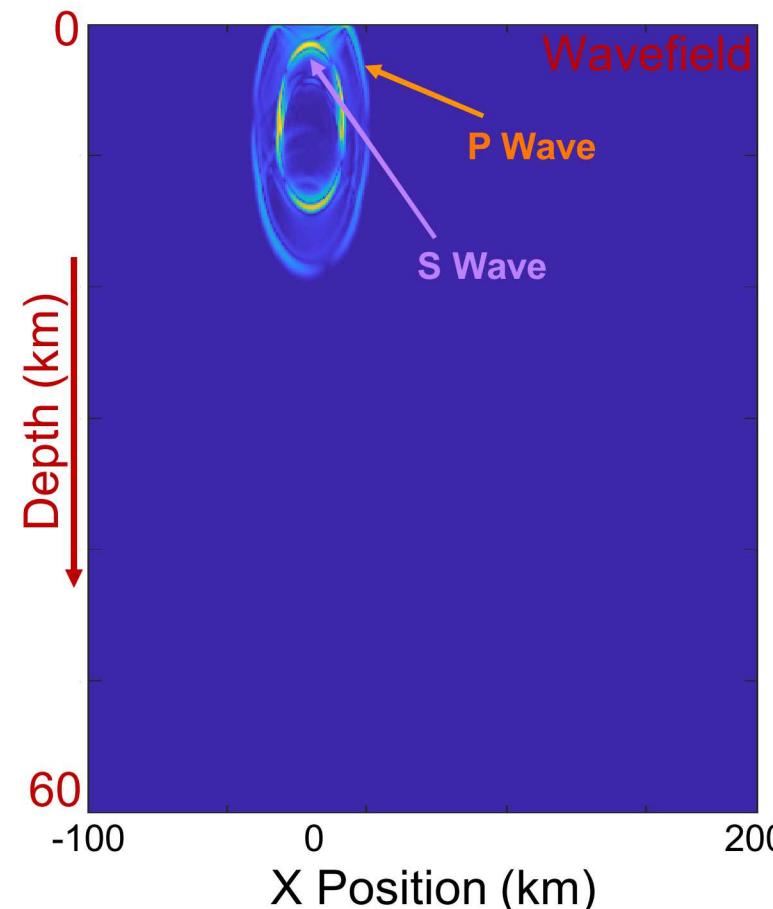
Bayesian Inference Problem

- Parameters
 - Event Parameters: Latitude, Longitude, Depth, Magnitude, Origin Time
 - Uncertainty Parameters: Travel time uncertainty
- Feature Model
 - AK135 for mean travel time and approximate travel time uncertainty
 - Waveform Simulations build signal power distribution as a function of distance from the source and marginalize over sources of uncertainty like focal mechanism.
- Background Noise Process
 - Assume a process modeled as a stationary Gaussian process within each window with known covariance
 - Independent of the event signal

Building Feature Model

Simulation Environment

- 2D waveform simulations⁴ on 300 km x 60 km domain from Crust 1.0 cross-sections of Utah
- Simulated 1k events at 10 sensors with uniformly distributed event and focal mechanism parameters



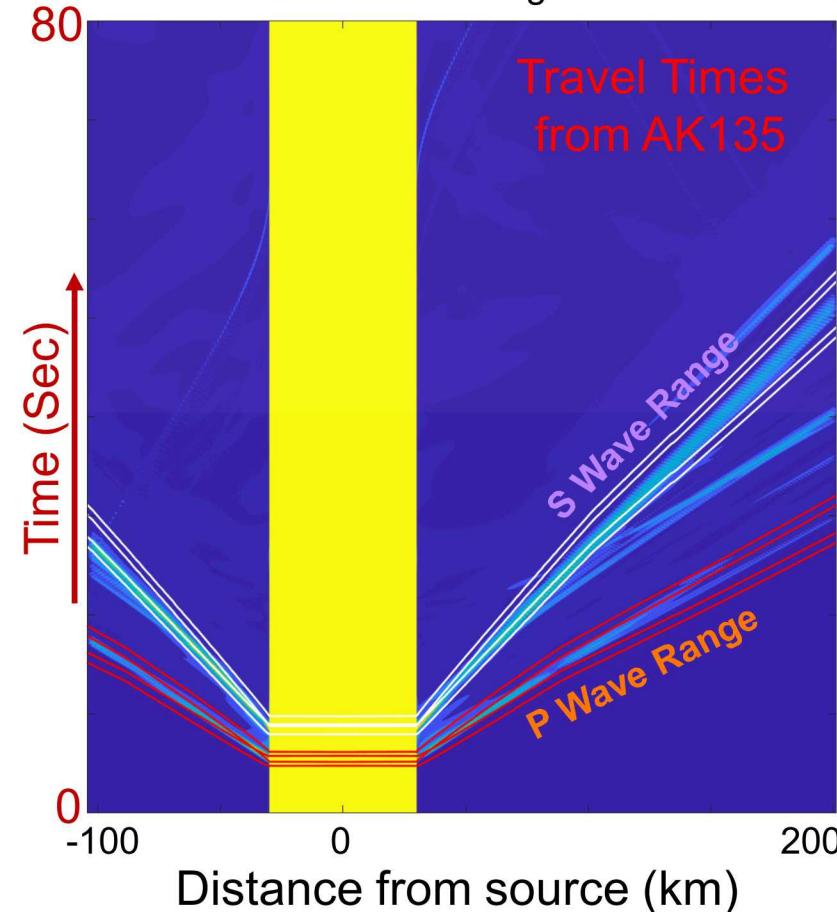
⁴Li, Dunzhu, et al. "Global synthetic seismograms using a 2-D finite-difference method." (2014)

Building Features: Extracting Waveform Features and KDE Model

- P and S travel times, uncertainty, and assumed duration define possible window arrangements
- The window arrangement which contains the maximum event power is used to build the KDE

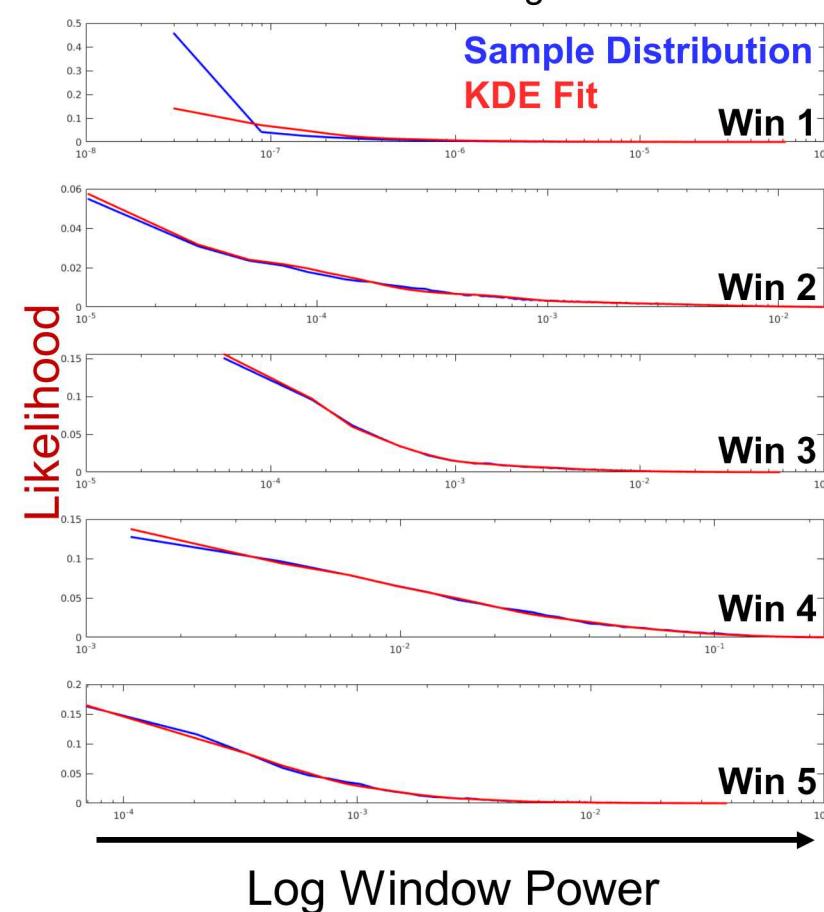
Extracting Waveform Power

Simulated Signal



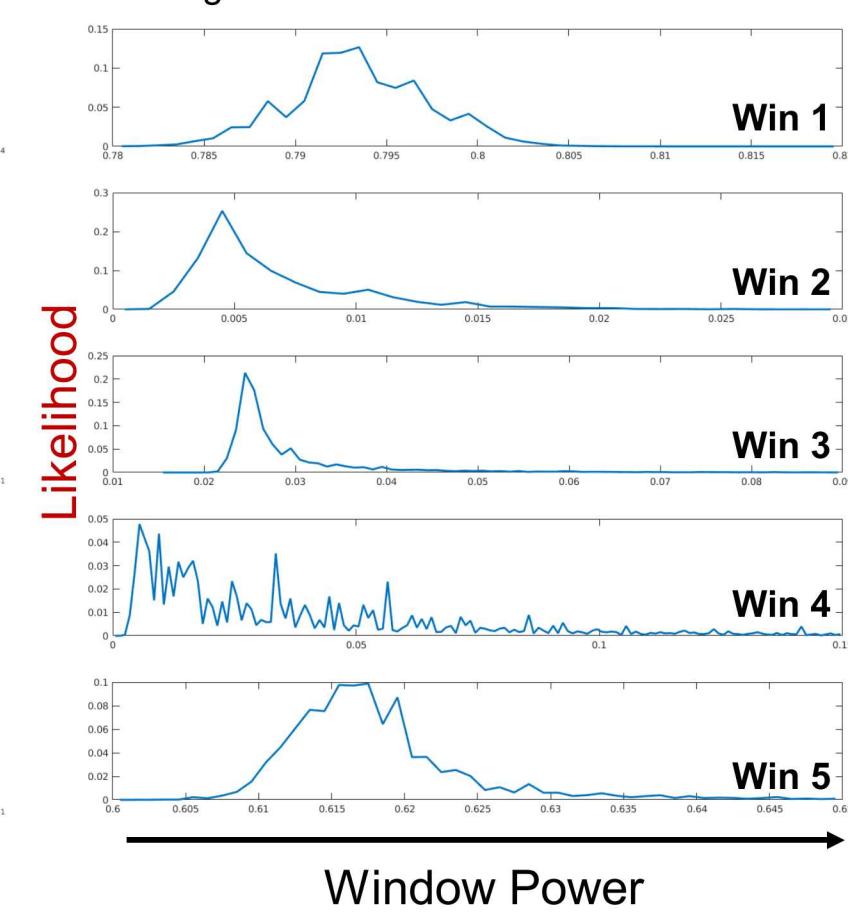
Distribution of Window Power

Simulated Signal



Distribution of Window Power

Background Distribution Added and Scaled

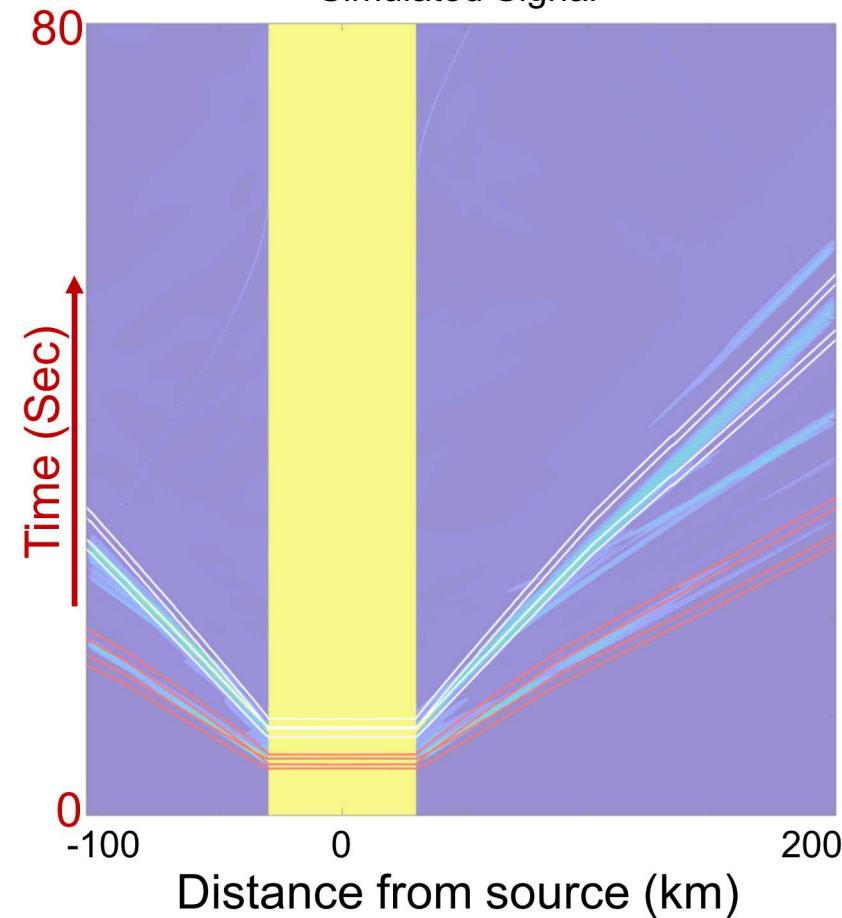


Building Features: Extracting Waveform Features and KDE Model

- The event magnitude and background process change the distribution of window power. Assuming a Gaussian background process, this can be modeled as shifting and scaling the KDE kernels.

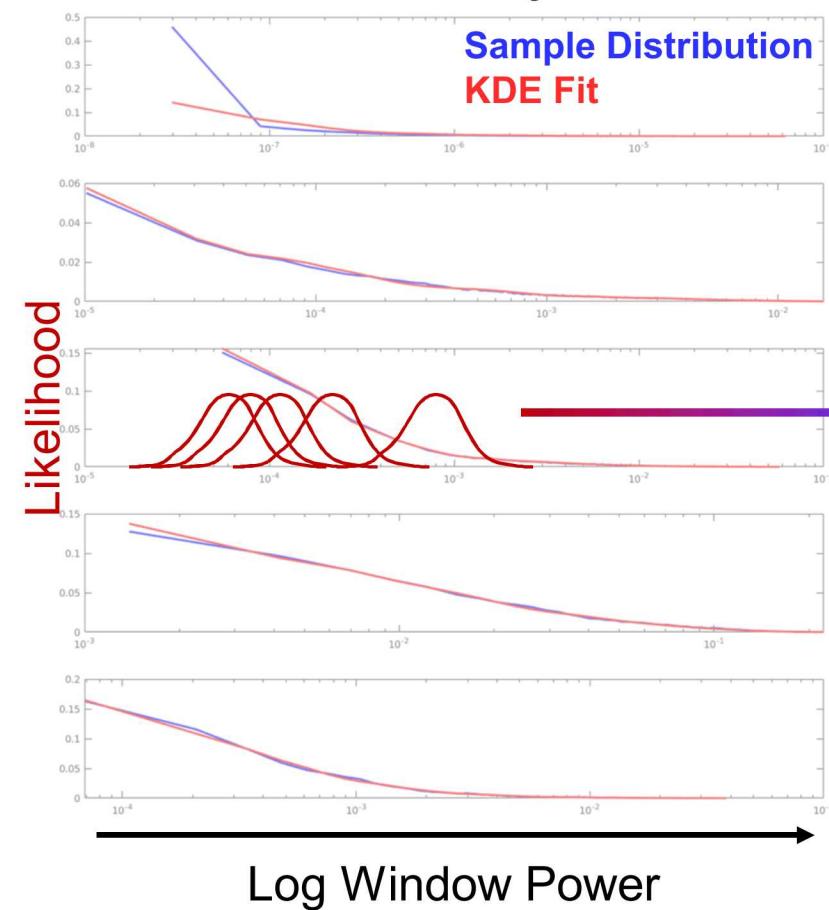
Extracting Waveform Power

Simulated Signal



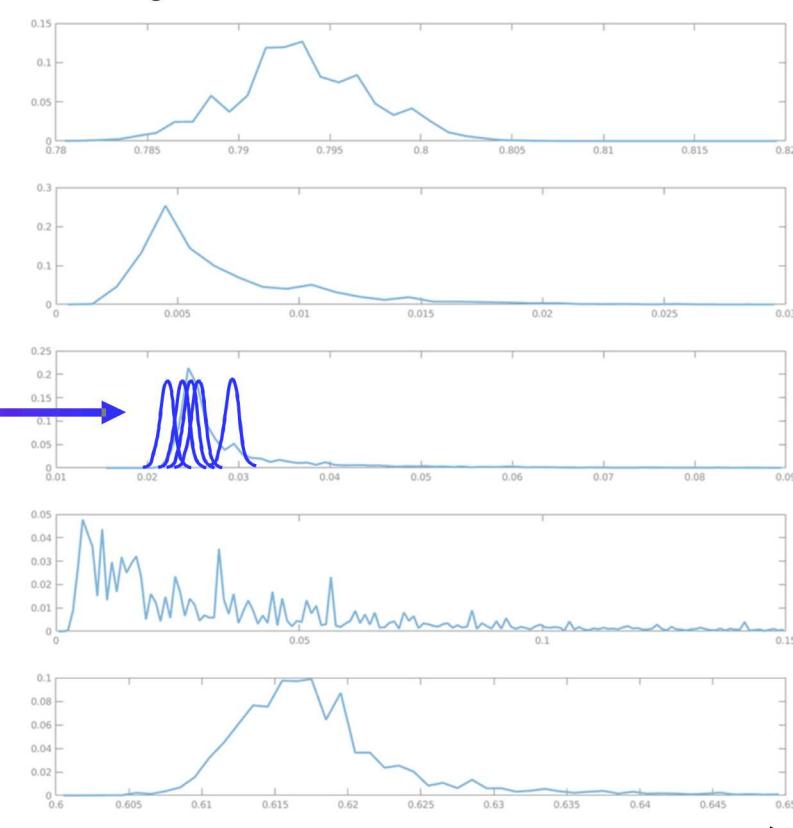
Distribution of Window Power

Simulated Signal



Distribution of Window Power

Background Distribution Added and Scaled



Markov Chain Monte Carlo

- Sequential Tempered MCMC^{5,6}
 - Combines Annealing, Importance Sampling, and MCMC into a single algorithm to efficiently sample the posterior
 - Enables parallel sampling to utilize HPC and model evidence estimates for event detection
 - The annealing schedule can be tuned to avoid poorly identified posterior distribution when only a limited number of sensors influence the likelihood
- Pseudo-Marginal MCMC⁷
 - Enables better uncertainty quantification by using unbiased estimate of the likelihood while still maintaining the posterior distribution.
 - Therefore we can more marginalize over sources of uncertainty e.g. travel time uncertainty.
 - Adaptive methods can be integrated into ST-MCMC to better importance sample the travel time distributions and determine how many trials are needed to get a reasonable likelihood estimate.

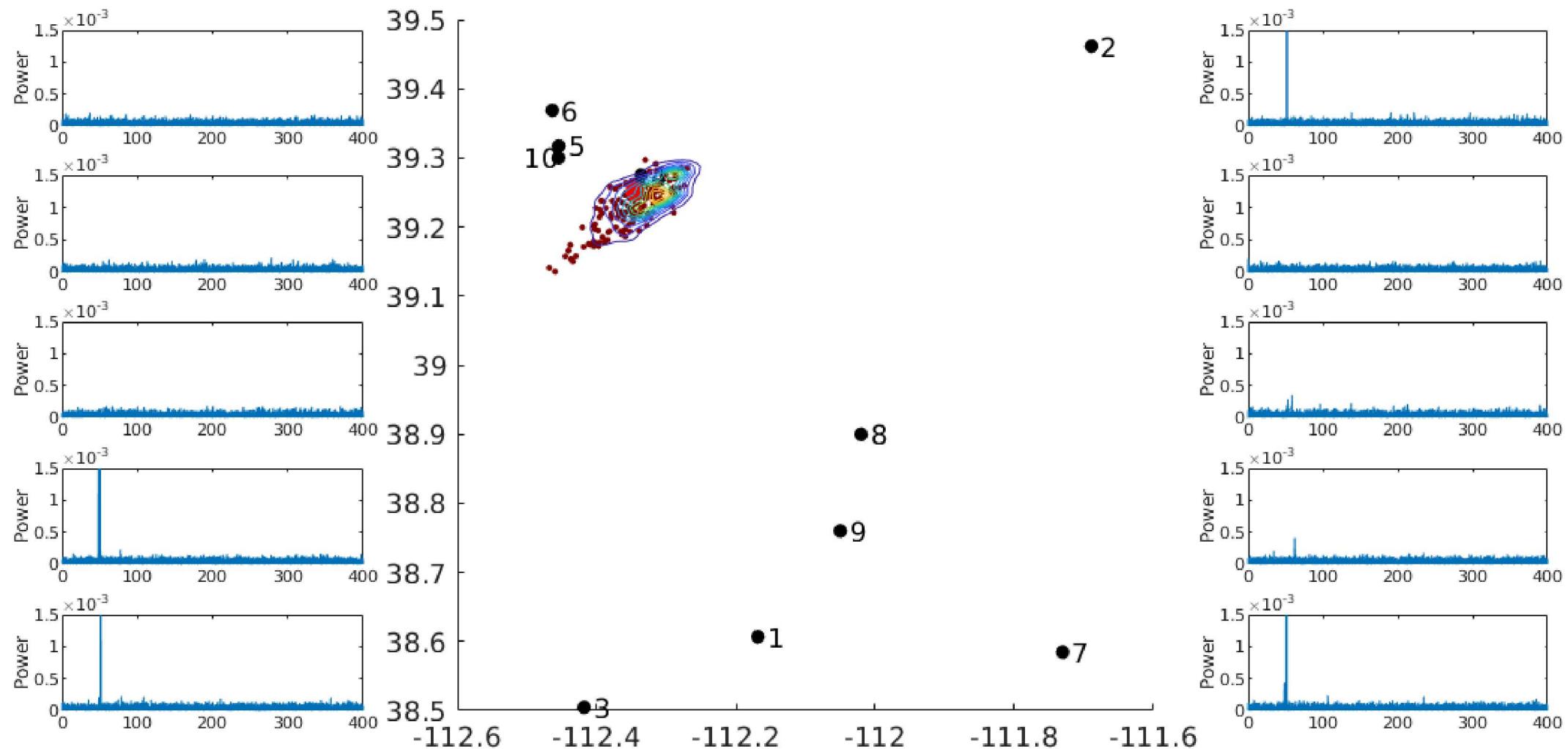
⁵Catanach, T A., and J. L. Beck "Bayesian updating and uncertainty quantification using sequential tempered MCMC with the rank-one modified metropolis algorithm" (2018)

⁶Minson, S. E., M. Simons, and J. L. Beck "Bayesian inversion for finite fault earthquake source models I—Theory and algorithm" (2013)

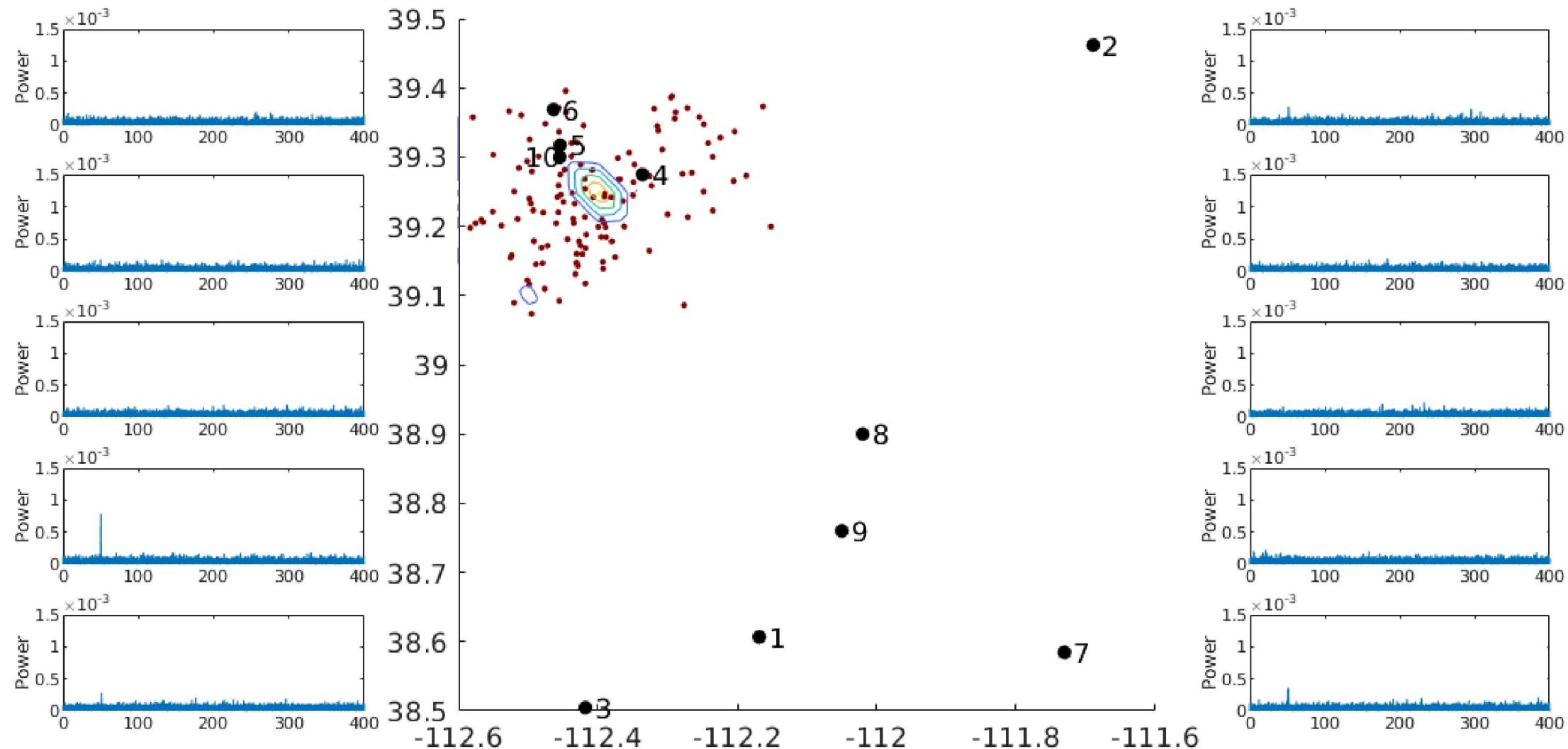
⁷Andrieu, Christophe, and Gareth O. Roberts "The pseudo-marginal approach for efficient Monte Carlo computations" (2009)

SYNTHETIC EXAMPLE

Example 1: Well identified strong signal



Example 2: Weak signal with more variance



FUTURE WORK AND CONCLUSION

Future Work

- Application and Validation
 - Multiple events and event model selection
 - Compare with Detection-Based and Signal-Based methods
- Better Uncertainty Quantification
 - Integrate complex description of the background noise process
 - Spatial correlation between sensors for more complex arrival time and power uncertainty models
- Richer Features
 - Integrate directional features
 - Preprocess signals to make extracting meaningful features easier such as performing STA/LTA

Conclusion

- Bayesian inference provides a natural way to express and propagate uncertainty for seismic monitoring and decision-making
- Feature-based inference provides a promising approach to signal-based full waveform monitoring that reduces the complexity of the statistical problem
- Advanced MCMC techniques can be employed to reduce the computational burden of the Bayesian inference problem and allow for the explicit integration of uncertainty

BACKUP SLIDES

Sequential Tempered MCMC

- ST-MCMC methods combine:
 - 1) **Annealing:** Introduce intermediate distributions
 - 2) **MCMC:** Explore the intermediate distributions
 - 3) **Importance Resampling:** Discard unlikely chains and multiply likely chains while maintaining the distribution
- Examples: SMC¹, Subset Simulation², TMCMC³, AlTar/Catmip⁴, AIMS⁵, and AMSSA⁶

¹ Del Moral et al 2006

² S.K. Au and J.L. Beck 2001

³ J. Ching and Y. C. Chen 2007

⁴ J.L. Beck and K.M. Zuev 2013

⁵ S.E Minson, M. Simons, J.L. Beck 2013

⁶ E. Prudencio and S.H. Cheung 2012

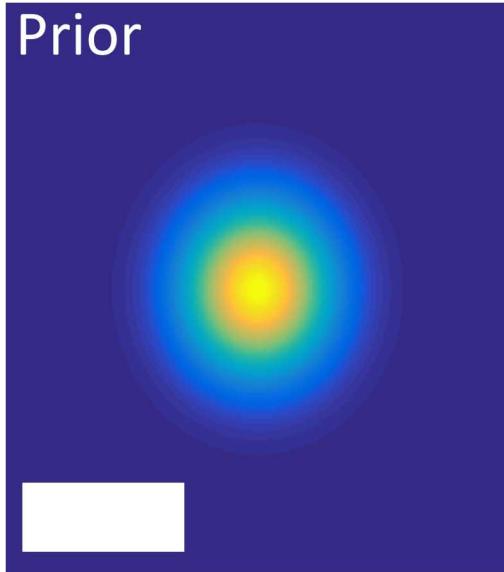
β defines how much the data updates the intermediate distribution:

$$\pi_i(\theta) \propto p(\mathcal{D} | \theta, \mathcal{M})^{\beta_i} p(\theta | \mathcal{M}) \quad \beta_i \in [0, 1]$$

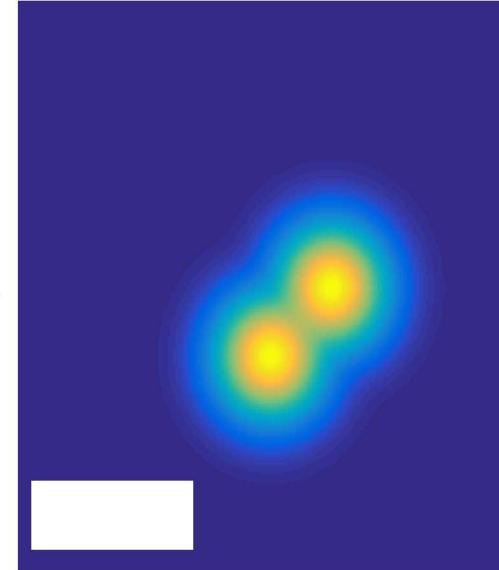
Intermediate distributions at different β levels

Level 0: $\beta_0 = 0$

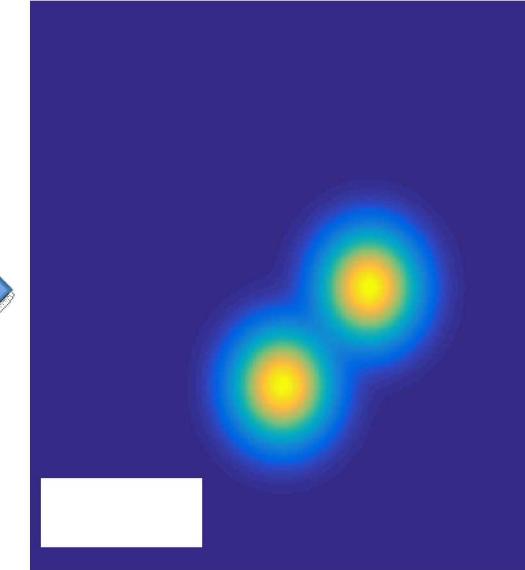
Prior



Level 1: $\beta_1 = \beta_0 + \Delta\beta_1$



Level 2: $\beta_2 = \beta_1 + \Delta\beta_2$



Level n: $\beta_n = 1$

Posterior

Find $\Delta\beta$ such that the **coefficient of variation (κ)** of the sample weights is 1

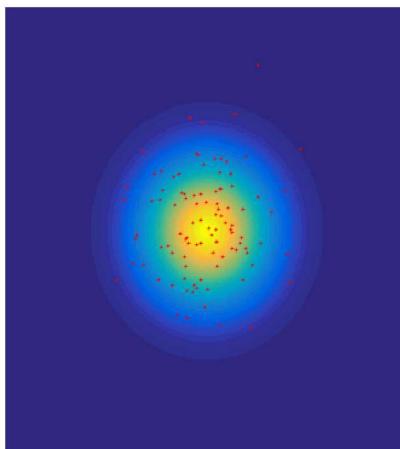
Sample weight:

$$w(\theta_j) \propto p(\mathcal{D} \mid \theta_j, \mathcal{M})^{\Delta\beta_i}$$

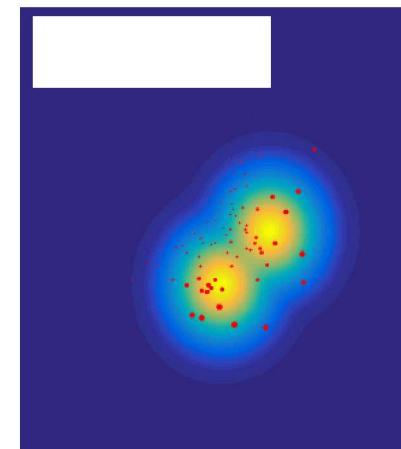
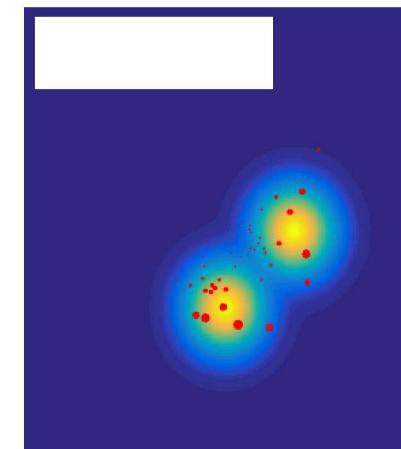
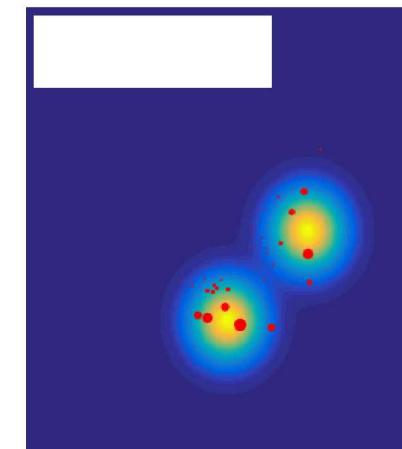
Coefficient of variation:

$$\kappa(w) = \frac{\sigma(w)}{\bar{w}}$$

Current Level



Set of Possible Next Betas



Weighted Sample
Populations

Importance Resampling

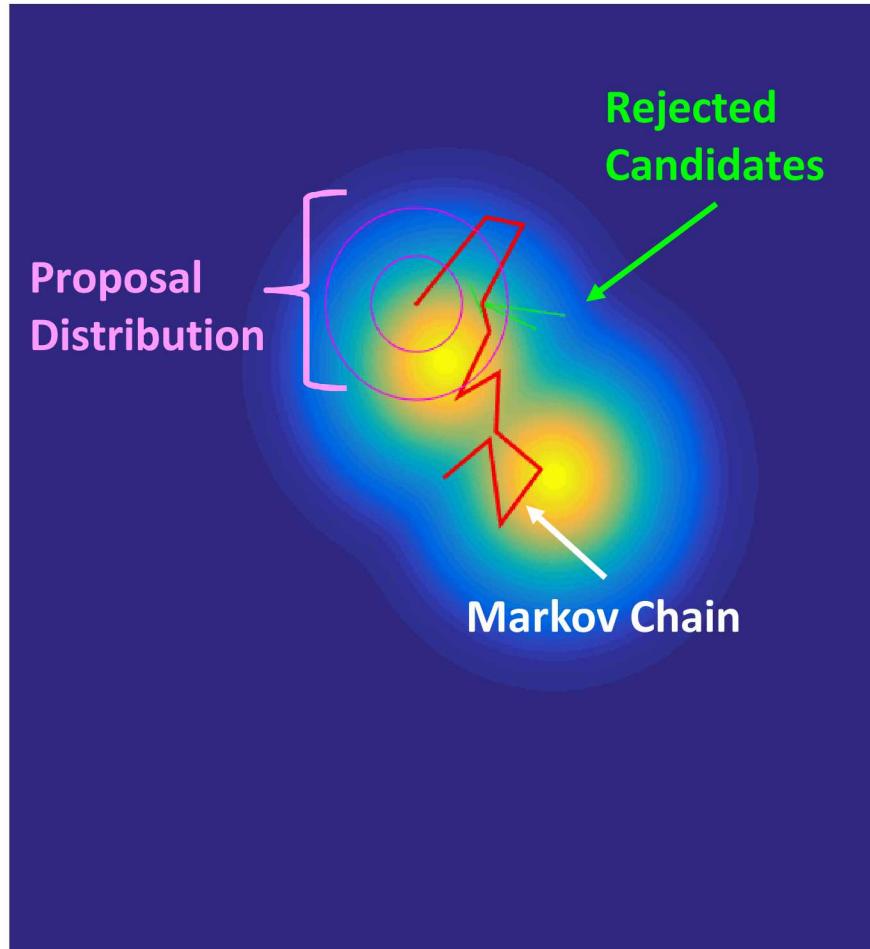
- Resampling the population rebalances the weights as the distribution changes. This discards unlikely samples and replicates likely samples
- Multinomial Resampling from level $i-1$ to level i :

Probability of selecting sample k : $P(\theta_{i,j} = \theta_{i-1,k}) = w(\theta_{i-1,k})$

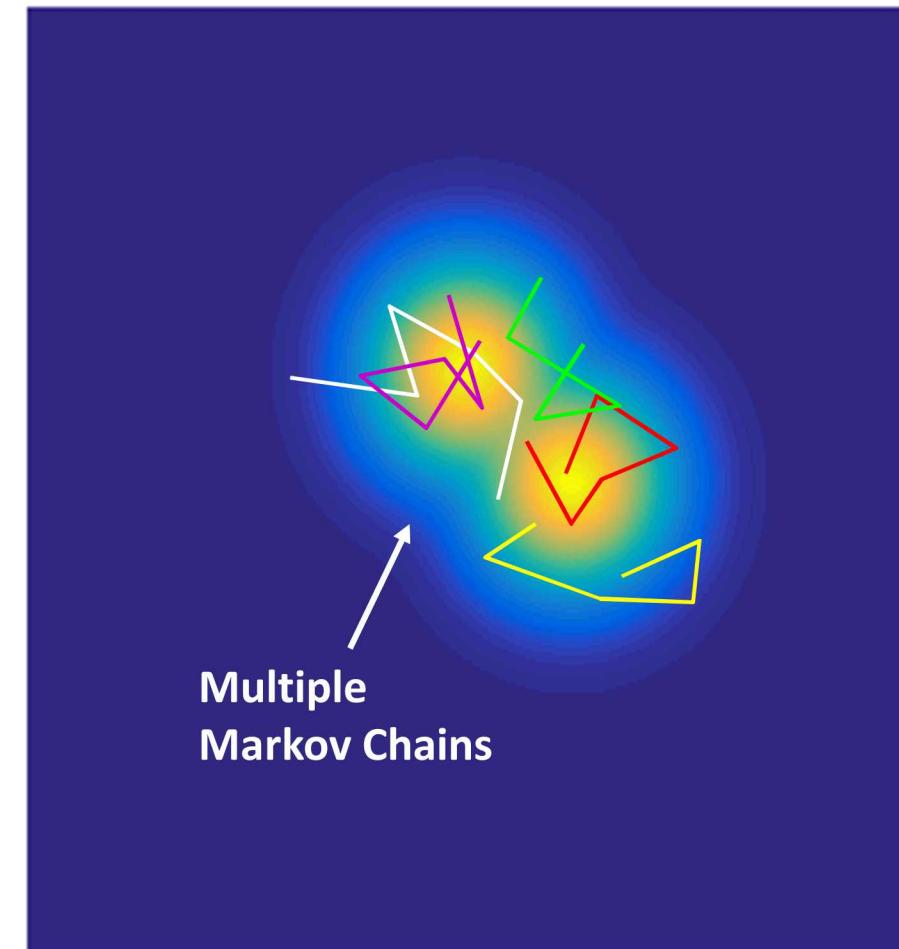
Sample weight: $w(\theta_{i-1,j}) \propto p(\mathcal{D} \mid \theta_{i-1,j}, \mathcal{M})^{\Delta\beta_i}$

Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain



Parallel MH Markov Chain



Designing the ST-MCMC Algorithm

- Algorithm Parameters
 - Number of parallel Markov Chains
 - Chain Length or **target correlation**
 - Annealing/convergence rate i.e. **coefficient of variation target**
- MCMC Algorithm
 - Freedom to choose the proposal distribution and its properties
 - Design of the Markov Chain kernel
- Resampling scheme for importance sampling