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■ The Bayesian Perspective:

o Probability distributions quantify uncertainty due to insufficient information

o Bayesian methods for identification and estimation are critical to robust decision-making

■ Target Contribution:

o Take a Bayesian approach to waveform processing to detect and identify seismic events while
integrating various sources of uncertainty to quantify confidence while identifying weak signals

o Use a unique statistical framework and novel computational methods to make waveform-based
Bayesian inference tractable

■ General Approach:

o Formulate an inference problem based upon predicting waveform features instead of the
waveforms themselves

o Simulate waveforms to build a statistical model of waveform features along with sources of
feature uncertainty

o Use Sequential Tempered Markov Chain Monte Carlo to efficiently identify events
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BAYESIAN INFERENCE AND MARKOV CHAIN

MONTE CARLO



The Bayesian Inference Problem

Observa o s:

Bayes' Theorem
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The Bayesian Inference Problem
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Observa ons:

Bayes' Theorem
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The Bayesian Inference Problem

Posterior Estimation:

Observa ons:

Bayes' Theorem

p (0 I D A4)
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The Bayesian Inference Problem

Exploration of the space
by proposal distribution

Observa ons:

Bayes' Theorem

p l 7 ), =

p(7)10 ,M)p(OIM) 

p(DiM)

Accept/Reject
correction
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Metropolis-Hastings
MCMC
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The Bayesian Inference Problem

Observa o s:

Bayes' Theorem

p l 7 ), M) —

73(7)10 ,M)p(OIM) 
P(P")

Posterior Estimation: E [g (0) l g (0)p (0 l 1),M) dO

Effective Number of Samples: Ess[g O, var [g )]
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The Bayesian Framework

Data: D

Prior: p (0)

Likelihood: p 0)
Physics Model
Sensor Model
Uncertainty Model

-layes' Theorem:

p (0 D) 
p (7) 0) p (0)

13 (7))

Knowledge about where

Posterior: p (0
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Background on existing Bayesian Seismic Monitoring Methods

Detection-Based
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■ Description

o Each station pre-processes their observed waveforms to extract arrival "picks"

o The likelihood of an event (or events) is based upon how well the observed arrival times

correspond to arrivals from seismic waves generated by the event hypothesis

o Arrival time and detection uncertainty can be integrated into the model

■ Examples: BayesLocl, NET-VISA2

■ Advantages

o Requires only a model of travel-time and not the waveform

■ Disadvantages

o Events that produce weak signals below the pick threshold cannot be detected, even when many
sensors are combined

1 Myers, S. C., Gardar Johannesson, and Robert J. Mellors. "BayesLoc: A robust location program for multiple seismic events given
an imperfect earth model and error-corrupted seismic data" (2011)

2Arora, Nimar S., Stuart Russell, and Erik Sudderth. "NET-VISA: Network processing vertically integrated seismic analysis" (2013)



Background on existing Bayesian Seismic Monitoring Methods

Signal-Based

■ Description

o The likelihood of a candidate event (or events) is based upon comparing predicted waveforms
given the event hypothesis, noise process, and other modeled uncertainty to the observed
waveforms

■ Example: SIG-VISA3

■ Advantages

o Can integrate many sensors to detect low magnitude signals

o Waveform characteristics can contain useful information for event identification

■ Disadvantages

o Requires learning and evaluating a generative model of the full waveform to compute the
likelihood of the observed signal

3Moore, David A., and Stuart J. Russell. "Signal-based Bayesian seismic monitoring" (2017)
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Defining feature-based inference

Graphical Model:
Event Parameters Signal Features Signal Waveform

Bayesian Inference:

• Feature-based inference requires building statistical models for the likelihood of a signal given
certain features and the likelihood of those features given an hypothesized event parameterization

Likelihood Prior

rj—I 
Signal Likelihood Feature Likelihood

p 09 Y) 
(

p (Y F) p (F 0) dF
p (17 1 9) p(e) 

13 (Y)
Posterior 

1,11_1

Evidence Marginalize over features

p (0) 

1) (Y)
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Feature Based Inference for Seismic Monitoring

• Waveform Features

o P and S arrival time

o Waveform feature
within window e.g. total
signal power

• P and S arrival times and
uncertainty can be found
using models like AK135

• We can build a statistical
model for the signal power
using simulations and
background models
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Waveform Likelihood based on arrivals and signal power feature

Bayesian Inference:

Posterior

p (0

Prior Features: P and S Arrivals and Window Powers

Y) p (0) p t, t t, P_131 Ths, 1:5 0) dtpdtsdPi:5

Assuming conditional
independence:

Uniform waveform
distribution conditioned
on features:

p (0) f p (Y1:5 tp)ts) P1:5) p (P1:5

Uniform Simulations and
Background process

p (171:5

tp, ts, 0) p (tp,ts
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61) dtpdtsdPi:5

tp, ts Pi:5)

p(Y I tp, ts P)

tp, ts, Pt)

Travel time model

1  a  (i) 
f (YTY — p (Y) dY

Quantifies the size of the signal
space with given features
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BUILDING FEATURE-BASED WORKFLOW



Data driven workflow

Model and Event
Prior Information

Waveform
Simulations

Extract Waveform
Features from

Data

Background Noise
Model

Event Waveform
Feature

Distribution

1
Waveform
Likelihood
Function
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Bayesian Inference Problem

■ Parameters
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o Event Parameters: Latitude, Longitude, Depth, Magnitude, Origin Time

o Uncertainty Parameters: Travel time uncertainty

■ Feature Model

o AK135 for mean travel time and approximate travel time uncertainty

o Waveform Simulations build signal power distribution as a function of distance from the source

and marginalize over sources of uncertainty like focal mechanism.

■ Background Noise Process

o Assume a process modeled as a stationary Gaussian process within each window with known

covariance

o Independent of the event signal
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Building Feature Model
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Simulation Environment

• 2D waveform simulations4 on 300 km x 60 km domain from Crust 1.0 cross-sections of Utah

• Simulated lk events at 10 sensors with uniformly distributed event and focal mechanism parameters
0  0

' Density Model

60 6u
-100 0 200 -100 0

X Position (km) X Position (km)
4Li, Dunzhu, et al. "Global synthetic seismograms using a 2-D finite-difference method." (2014)

200 -100 0

X Position (km)
200
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Building Features: Extracting Waveform Features and KDE Model

• P and S travel times, uncertainty, and assumed duration define possible window arrangements

• The window arrangement which contains the maximum event power is used to build the KDE

Extracting Waveform Power
Simulated Signal
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Building Features: Extracting Waveform Features and KDE Model
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• The event magnitude and background process change the distribution of window power. Assuming a

Gaussian background process, this can be modeled as shifting and scaling the KDE kernels.

Extracting Waveform Power
Simulated Signal

80

a)

0
-100 0 200

Distance from source (km)

Distribution of Window Power Distribution of Window Power
Simulated Signal Background Distribution Added and Scaled

00

0.3
Sample Distribution

0 2 KDE Fit
0.1

1 ° 18 0.785 an 0 82

0.3

0.2

0.1

10'

10'

10-1

 ►

°°;,
0.05

0.04

0.03

0.02

atm

0 1 

0 08

0.06 IIL

0 04

0 ,

0.005 0.01 0.015 0.02 0.025 0. 3

0 04 0 05 0 06 0.07 0.08 0.

A 

0 05 0.1 0. 5

Log Window Power Window Power



Markov Chain Monte Carlo
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■ Sequential Tempered MCMC5,6

o Combines Annealing, Importance Sampling, and MCMC into a single algorithm to efficiently

sample the posterior

o Enables parallel sampling to utilize HPC and model evidence estimates for event detection

o The annealing schedule can be tuned to avoid poorly identified posterior distribution when only
a limited number of sensors influence the likelihood

■ Pseudo-Marginal MCMC7

o Enables better uncertainty quantification by using unbiased estimate of the likelihood while still
maintaining the posterior distribution.

o Therefore we can more marginalize over sources of uncertainty e.g. travel time uncertainty.

o Adaptive methods can be integrated into ST-MCMC to better importance sample the travel time
distributions and determine how many trials are needed to get a reasonable likelihood estimate.

5Catanach, T A., and J. L. Beck "Bayesian updating and uncertainty quantification using sequential tempered MCMC with the rank-one modified metropolis algorithm" (2018)
6Minson, S. E., M. Simons, and J. L. Beck "Bayesian inversion for finite fault earthquake source models l—Theory and algorithm" (2013)
7Andrieu, Christophe, and Gareth O. Roberts "The pseudo-marginal approach for efficient Monte Carlo computations" (2009)
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Example 1: Well identified strong signal
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Example 2: Weak signal with more variance
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FUTURE WORK AND CONCLUSION



Future Work

■ Application and Validation

o Multiple events and event model selection

o Compare with Detection-Based and Signal-Based methods

■ Better Uncertainty Quantification

o Integrate complex description of the background noise process

o Spatial correlation between sensors for more complex arrival time and power uncertainty

models

■ Richer Features

o Integrate directional features

o Preprocess signals to make extracting meaningful features easier such as performing STA/LTA
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Conclusion

■ Bayesian inference provides a natural way to express and propagate uncertainty for seismic
monitoring and decision-making

■ Feature-based inference provides a promising approach to signal-based full waveform monitoring
that reduces the complexity of the statistical problem
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■ Advanced MCMC techniques can be employed to reduce the computational burden of the Bayesian
inference problem and allow for the explicit integration of uncertainty
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Sequential Tempered MCMC
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■ ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions

2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while maintaining the
distribution

■ Examples: SMC1, Subset Simulation2, TMCMC3, AlTar/Catmip4, AIMS5, and AMSSA6

1 Del Moral et al 2006

2 S.K. Au and J.L. Beck 2001

3 J. Ching and Y. C. Chen 2007 5 S.E Minson, M. Simons, J.L. Beck 2013

4 J.L. Beck and K.M. Zuev 2013 6 E. Prudecio and S.H. Cheung 2012



Annealing

defines how much the data updates the intermediate distribution:

7 ( ) a p (7)1

Level 0: [30 = 0

Prior

p

0 MY (3i p (0 M) ,3, E [0 1

Intermediate distributions at different p levels
Level 1: 131 = [30 + A[31 Level 2: [32 = 131 + A[32 Level n: Pon = 1
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Annealing: Finding Ap

Find Ap such that the coefficient of variation (. ) of the sample weights is 1

Current Level

Sample weight:

Coefficient of variation:

(O ') 1) (7' l

k (W) — c r (w) 

Set of Possible Next Betas
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Weighted Sample

Populations



Importance Resampling
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• Resampling the population rebalances the weights as the distribution changes. This discards unlikely
samples and replicates likely samples

• Multinomial Resampling from level i-1 to level i:

Probability of selecting sample k: P (0-  k) w 0- 1 )

Sample weight: w (0- p D Oi_

35



Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain
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Designing the ST-MCMC Algorithm

■ Algorithm Parameters

o Number of parallel Markov Chains

o Chain Length or target correlation

o Annealing/convergence rate i.e. coefficient of variation target

■ MCMC Algorithm

o Freedom to choose the proposal distribution and its properties

o Design of the Markov Chain kernel

■ Resampling scheme for importance sampling
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