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Abstract. We develop a multi-tiered approach to measure the complex-
ity of agent based models of social systems, incorporating four interacting
but complementary aspects of complexity: system intricacy, information
theoretic complexity, behavioral capacity and social organization. We
apply these metrics on the cla.ssic Schelling model of segregation as an
example.

1 Introduction

Agent based modeling (ABM) has a long and rich history in studying social
phenomena. The benefit of ABM is in developing simulations in which complex
patterns emerge. The extent to which underlying micro-processes and the result-
ing patterns of behavior are similar to the real world is the question of validity
and is an extensively studied question [7,2].

We focus on an aligned question, what does it mean for an agent based model
to be "complex"? While there has been study of the computational complexity
of multi-agent systems (MAS) [19] and the complexity of MAS software [12]
there is very little work that studies the complexity of multi-agent systems in a
way similar to that of the real world. Thousands of models with widely differing
micro processes have explored historical, fictional and futuristic domains. How do
we distinguish between different agent based models? How do we quantitatively
compare across different models over different domains?

To address these questions, we propose a quantitative, multi-tier definition
of complexity that can be used in studying agent based models of social systems.
Our metric is founded on insights from complexity theory, the social sciences,
and software engineering. By integrating multiple domains in the development of
our metric we are able to better capture the multi-faceted nature of complexity.

Using our metric, agent based models of social systems can be quantitatively
compared with each other, allowing us to better understand their utility.
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2 Ground truth

All agents have an underlying decision process that integrates perceptions of
the environment, signals from other agents, and their own goals to determine
behavior autonomously. We call this underlying decision model the "ground
truth" of the model, since it dictates the behavior of agents in the simulation
(the "micro lever ) and, thusly, the behavior of the simulation as a whole (the
"macro lever effects [23]).

As a simple example, consider a 2-D cellular automata. Each cell perceives
its neighbor's states and autonomously changes its state in response based on
the rules of the model. The decision rule for each cell is the ground truth of
the model. If the decision rule changes, the macro level simulation behavior can
dramatically change [3].

A variety of models of agent decision making exist such as the Belief-Desire-
Intention (BDI) cognitive model [20], or the Partially Observable Markov Deci-
sion Process (POMDP) model [18].

Our goal is to identify a simple representation of agent decision making that
will capture the following:

— How agents in the simulation make decisions.
— How agents in the simulation interact with each other.
— How agents in the simulation interact with their environments.
— Any environmental factors that influence each other within the simulation.

We will constrain the ground truth to focus only on causal connections be-
tween variables and parameters within the model. Causality is defined by in-
terrogation of the decision rules and equational relationships for the model. For
example, if variable A is used in the equation/algorithm for calculating variable
B, then we say that A causally impacts B.

We represent the ground truth as a graph, Nodes represent variables and
functions/aggregations of variables, and edges between nodes represent causal
relationships between nodes. For example, if variable A is used in the equa-
tion/algorithm for calculating variable B, then we include a link from Node A
to Node B.

We allow nodes to represent functions/aggregations over agents or the envi-
ronment (for instance, a node could be the average value of a state across all
agents in the simulation).

In identifying the ground truth, we follow these principles:

Nodes should be combined where possible. If there are multiple simulation
variables that represent similar concepts and have the same causal structure
(ie: the same causal influences), then those variables can be represented as
a single node.
Relationships between entities should be represented as simply as possible.
For example, the ground truth does not need to represent the entire influence
network between agents in the simulation; instead, links can represent types
of causal relationships between generic agents.



— The exact functional form of equations and parameterization are not rep-
resented in the ground truth. The ground truth diagram is only meant to
specify causal relationships.

Section 4 outlines the ground truth for the classic Schelling Segregation
model.

3 Proposed multi-tier complexity metrics.

Table 1. Complexity metrics organization

Not tied to so-
cial/behavioral science

Inspired by so-
cial/behavioral science

Requires knowledge of sys-
tem structure

System Intricacy Behavioral Capacity

Does not require knowl-
edge of system structure

Information-Theoretic Social Organization

Delineating between simple, intricate (sometimes also referred to as com-
plicated), complex, and chaotic systems is a difficult task. Many definitions of
complexity have been proposed in the literature [9,14] but no definition is widely
accepted. We are focused on assessing the complexity of models of social systems.
To measure the complexity of social simulations, we have identified a multi-tiered
suite of metrics that captures different elements of complexity. Using a carefully
chosen combination of methods, we can gain a deeper and more nuanced under-
standing of simulation complexity than could be achieved with a single metric.

The complexity metrics are organized along the two dimensions in Table 1.
The first dimension (rows) differentiates between metrics that require knowledge
of the system structure (i.e., ground truth) of a simulation and those that do not.
Metrics that require knowledge of the system structure may be useful for causal
simulations, but we generally do not have knowledge of the causal structure
of real-world systems. However, if we can develop methods to infer this causal
structure, these complexity metrics may apply on real-world systems.

The second dimension (columns) relates to the original intended application
space of the metric. The right-hand column includes metrics that are inspired
by the social and behavioral sciences, while metrics in the left-hand column
measure more abstract properties of the simulation, and might be inspired by
other application spaces or might be purely mathematical. We focus on the social
and behavioral sciences since our focus is on modeling of social systems.

The four metrics are described in more detail below.



3.1 System Intricacy

Measures of system intricacy capture the complexity of a simulation's causal
structure, or ground truth. These metrics are inspired by the notion that the
more components and causal relationships a system has, the more complicated
it is.

System intricacy is intimately tied to the causal structures, processes and in-
teractions that determine the dynamics of the system. One approach for measur-
ing system intricacy in simulations is to evaluate the complexity of the structure
of the underlying software implementation, however these are not pure metrics
of the system. We evaluate the system intricacy of a simulation by evaluating
the simulation's ground truth.

Cyclomatic complexity (initially proposed in [13]) was initially developed for
studying the complexity of software, however it has since been used in other
domains [16]. We use it as a concise summary of the complicatedness of a simu-
lations ground truth.

Cyclomatic complexity (M), captures the interconnectedness of a graph by
counting the nodes (N), edges (E) and the number of connected components
(P) in a graph:

M=E—N-F2P

3.2 Behavioral Capacity

Behavioral capacity measures capture the potential for rich and diverse inter-
action potential among agents in a system. The underlying hypothesis is that
complex simulation of social processes will include significant and varied interac-
tion between agents. Humans participate in a wide variety of groups, at multiple
scales (from country membership to family groups). A complexity measure that
captures this will capture an important part of human behavior.

A variety of metrics can be used to represent behavioral capacity of a social
simulation, such as the number of interactions between agents, or the number of
groups an agent participates in.

We focus on a measure that explicitly counts the number of relationships
an agent has, the number of differentiated relationships, because of its intuitive
appeal, ability to quantify, and prior work in the literature [1].

Intuitively, an agent that has multiple different types of relationships must
juggle different goals and needs. An individual must do the same when they
interact with a shopkeeper vs. family member. The difference in relationship can
naturally track that of group membership.

Quantification of this measure can be done by viewing the ground truth
of the model. Since the ground truth specifies all interactions between agents
we should see evidence of differentiated relationships as types of influences and
interactions agents can have with each other.



3.3 Information-Theoretic

Information-theoretic complexity measures capture information content related
to the dynamics of a system. These metrics are inspired by the notion that a
more complex system will generate more information over time. These metrics
account for uncertainty, and are calculated using a systems (or simulations) in-
put and/or output data (see [22] for a review). Information-theoretic complexity
metrics have been developed and used in several fields. These metrics may not
always capture our intuition of complexity; for example, these measures might
consider randomness to be a form of complexity, since uncertainty and informa-
tion content are entangled. We address this by considering information-theoretic
complexity metrics in conjunction with the other three metric categories. These
metrics are calculated using data directly from the social system or simulation
results.

Many information theoretic metrics have been proposed in the literature,
such as entropy [4], mutual information [4], autocorrelation [11], and compres-
sion ratios [10]. We focus on forecasting complexity (C) [22], which captures
the minimum amount of information (H) needed for optimal prediction within
a time-series, where part of the time-series, X—, is used to predict the rest,
X+(such that X = (X— , x+)), using a model f in M (where M is a specific
space of models):

C = min
M 
H(f (X—))

fE 

Forecasting complexity captures an intuitive notion of complexity based on pre-
diction, but it is hard to compute and requires a space of models (M) to search.
Here, we use an approximation to forecast complexity involving compression
ratio which itself is an approximation to normalized information distance [10]
(which we call approximate NID).

For the information theoretic complexity on a time series of data, normal-
ized information distance between the past and future information is defined as
follows.

NID(xy) — 
max{K(xly),K(ylx)} 

max{K(x),K(y)} '

We approximate this using split points computed over the entire time series
giving a series of approximate NID complexities. This series of complexities is
then averaged. The equation is given by

max{Z(4), Z(ylx)} 
approximateNlD(x, y) =

max{Z(x), Z(y)}

where Z takes time-series information and gives the size of information after
conditional compression. The LempelZiv-Markov chain algorithm (LZMA) com-
pression is used because it takes and creates dictionaries for compression as
it compresses and uses these dictionaries to compress new strings processed in
the future, thus implementing a notion of conditional compression used here in
approximate NID.



Let S = {S1, ..., Sn} be the data series. Then we are interested in the series
approximateN/D(St , St+i) for t = 1, 2, ..., n — 1.

In theory approximateN/D(x, y) E [0, 1], because in theory Z (xly) < Z (x)

and Z is positive valued. The normalized p-norm is ( f (i)P 1)11 P . If p = 1 then
x=1

indeed the mean is given. If p = oo (that is the limit as p gets arbitraily large),

then the maximum is given. Note that lim 11/13 = 1. Since the information
n

theoretic complexity is the normalized 2-norm it is in [0, 1] and it is moderately
influenced by the maximum and the average. But this complexity is resilient to
maximums which are outliers, as well as large sequences of constant values which
may be due to poor choice of cut-off times for the simulation.

3.4 Social Organization

Measures of social organization capture information about how individuals form
groups, how groups combine to form larger groups, and how individuals and
groups interact. These metrics are inspired by the idea that complex social sys-
tems demonstrate emergent hierarchical organization and complicated interac-
tions between individuals and groups [17]. This category of metrics addresses the
interaction between different levels of analysis, i.e., micro, meso and macro scale
patterns within the system [6]. These metrics will be calculated using simulation
results — the characteristics, states, and actions of agents during the simulation.

To preserve generality, we focus on measures that apply to a social network
generated by a simulation. The social network represents interactions between
agents in a simulation. A node in the social network represents an agent, and
an edge represents interaction. We can extract interactions between agents from
simulation output to create a social network.

Quantitative characteristics of a social network have been used to characterize
real world social systems ([5]). Existing literature suggests a variety of means
to capture different aspects of social networks, including clustering coefficients,
community detection algorithms, and centrality measures.

We focus on measures that can capture the hierarchy within a social system.
Hierarchies are an important concept in the social and physical sciences, and
have been considered a fundamental characteristic of complex systems [17]. To
quantify the hierarchy within a simulation we focus on the Global Reaching
Centrality measure (GRC) as defined in [15], which uses the local reach centrality.

Let C R(i) be the local reach centrality of node I, the proportion of nodes
that can be reached from node I via outgoing edges. Then the Global Reach
Centrality (GRC) is defined as:

G RC = 
[CV' — C R(i)] 

(N — 1)
iEV

This definition can be easily extended to undirected networks by considering the
weights on the edges (with a default weight of 1) for every edge. The GRC can



range from 0 to 1, with a higher value indicating a higher level of hierarchy in
the social network [15].

4 Example application: Schelling segregation model

As an illustrative example, and to highlight potential difficulties, we consider ap-
plying our complexity metrics to the classic Schelling segregation model [21]. Our
goal is not to extensively evaluate the Schelling model, but rather to highlight
the promise, and understand the pitfalls, of our multi-tier complexity metric.

We use the NetLogo implementation of the Schelling model [24]. Agents are
characterized by a color that is fixed throughout the simulation and are located
on a 2-d lattice. Only one agent can be at any single point on the lattice.

Agents have a preference to be with like-minded (i.e., same color) agents.
The premise is that if an individual has a preference to be in a neighborhood
where a larger percent of neighbors have similar traits to themselves than their
current neighborhood, then and only then are they motivated to move to a new
residence (empty lattice site).

By leaving, the agent has positively reinforced the current dominating trait;
while on the other hand, this agent's presence at their new location reinforces
their own trait at the new location. Such an act reinforces the average mind-
set of the neighborhood, causing any unlike-minded neighbors to be even more
outnumbered, hence they have reinforced segregation on multiple fronts. Due
to this positive feedback, even a slight intolerance (such as the need for 26%
like-minded neighbors) could potentially lead to highly segregated regions.

We consider a simple version of the Schelling model here, but there has been
extensive study of this model, see [8]

Ground truth for the Schelling model Agents in the Schelling model have
the following characteristics (fixed features of the agent) and states (dynamic
features of an agent):

Characteristics :

Color An actor has a color that is fixed throughout the simulation.
Preference Ratio The percentage of neighbors of an actor that should

share the same color, denoted as Ppref.
Behaviors :

Change Location An actor can take the action to change it's location to
another empty location in the grid.

States :
Location Location of an actor on the grid.

Let Pmatching be the fraction of neighbors of an actor that have the same color
as the actor. On a time step, the decision rule an actor executes is the following:

if Pmatching < Ppref then Actor Changes Location
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Fig. 1. Ground Truth for the Schelling model

Fig. 1 is the ground truth for the Schelling segregation model.
Node 1 is an aggregation of the characteristics of neighboring agents. Node

2 is the color of an agent. Node 3 is the preference ratio for an agent. Node 4 is
the location of an agent, and Node 5 is the behavior an agent undertakes.

In this specific implementation, all agents have the same preference ratio.
Even if agents had different preference ratios, the ground truth would not change
as it only captures the fact that there is a relationship between preference ratio
and the behavior to change a location.

5 Parameters and Types of Behaviors

The Information-Theoretic and Social Organization measures are computed on
simulation output and are thus dependent upon the parameterization of the sim-
ulation. There are several parameters in the Schelling model that can influence
the system behavior.

Density The fraction of locations on the 2-D lattice on which an agent resides.
If the density of the population is too low then all the agents may have no desire
to move, as they have no neighbors. If the density were 100% then the agents
could not move. Moreover, given a good value of density there exist high values
of preference so that the agents never settle; likewise there are such low values
of preference that they settle immediately.

Preference Ratio Setting If the preference is above 80% (and even above
75% for most densities) then enough agents choose to move that the simulation
becomes chaotic and uninformative. If the preference ratio is too low, agents do
not desire to move at any time and the simulation exhibits no dynamics.



The range of density in NetLogo's segregation model is 50% — 99%, all of
which are determined to be reasonable. For densities less than 50%, the simula-
tion converges too quickly or gets stuck in a random cycle. When the preference
for the agents is too high, then on the boundary of the segregated regions the
agents will choose to move and move randomly, making the boundary grow.
Eventually, the entire population is moving randomly, rarely staying in any lo-
cation.

6 Application and discussion of Complexity Metrics

6.1 System Intricacy & Behavioral Capacity

For the Schelling model, the system intricacy is M = 4 — 5 + 2 * 1 = 1. The
behavioral capacity is simply the number of differentiated relationships, which
is determined to be 1.

This aligns with intuition and general perception. In fact, its importance
derives from the fact that so few elements are needed to produce what is thought
to be a complex pattern of behavior.

All agents in the Schelling model interact with each other in the same way, by
evaluating their color. A counter argument would be that since color determines
action, and there is a different action for agents that are of a different color,
that would indicate a different relationship. However, note that the action of an
agent does not have a subject — no agent does anything to another agent. This is
the underlying characteristic of a differentiating relationship, one in which there
are different actions towards different agents, of which there are none here.

6.2 Information Theoretic Complexity

To apply our information theoretic measure, we need to identify the appropriate
information to collect at each time step. In this simple model we can use the
states of every location on the grid as a representation of the simulation at each
time step.

Table 2 shows the information theoretic complexity values for a variety of
parameter settings, chosen to highlight different behaviors.

This metric aligns with our intuition. When there is near instant convergence,
the information theoretic complexity is low (0.38 for density = 50% and prefer-
ence ratio at 50%) vs. situations in which there is lots of movement (density =
99% and preference ratio of 60%).

We acknowledge a weak correlation with the number of timesteps, but note
that our 2-norm method alleviates some of that. Compare the values for density=90%
vs. density=50% for the preference ratio value of 50%, we can see that even with
fewer time steps to converge the information theoretic measure was higher.



Density 1 Preference 50% Preference 60%

99% 0.64 (35) 0.96 (1001)
90% 0.59 (19) 0.72(99)
80% 0.46 (25) 0.63(33)
70% 0.49 (21) 0.58(30)
60% 0.47 (20) 0.59(23)
50% 0.38 (28) 0.62(19)

Table 2. Information Theoretic complexity examples at convergence (time steps to
convergence indicated in parentheses, simulation stopped at 1000 timesteps if not con-
verged), given density and preference.

6.3 Social Organization

We define the social network for the Schelling model in the following way. An
unweighted edge is established between two agents if they were neighbors at any
point during the simulation. The global reaching centrality (GRC) was calculated
on this network, see table 3.

Density Preference 50% Preference 60% Preference 70%

99% 0.1648 0.1628 0.1583
90% 0.0931 0.1012 0.0898
80% 0.0880 0.1129 0.0537
70% 0.0801 0.0979 0.0494
60% 0.0825 0.0954 0.0654
50% 0.0870 0.0910 0.0717

Table 3. Global Reaching Centrality (GRC) examples after 500 time steps, given
density and preference. Given a particular density, it would appear that the GRC is
at its highest for the preferences which converge the most quickly. This table does not
include parameters for when the agents move randomly forever.

The GRC measure of the simulation runs can be compared to real world
examples. [15] calculates the GRC for a variety of real world graphs. Food webs
have a high GRC. Surprisingly, trust in an organization has low GRC scores. Our
results show quite a low value of GRC for the parameter setting, indicating that
the social network we defined based on neighbors is not very hierarchical. This
makes sense, as agents move around in the grid. We can also notice a pattern
of decreased hierarchy as the density increases. There should be a correlation
between increase in density and agent moving (if they desire to move, but can't
find a place to move, they will continue to desire to move).



System Intricacy
1

Behavioral Capacity
1

Info.- Theoret ic Social Organization
0.59 0.10

Table 4. Summary of complexity metric for the Schelling model. Info. Theoreticand
Social Organization values are means over parameters settings defined in Table 2 and
Table 3, respectively.

7 Discussion & Conclusion

Table 4 summarizes our assessment of the Schelling model using the multi-tier
complexity metrics. In any simulation there will be critical parameters that can
impact simulation behavior. Two of our metrics are sensitive to those parame-
ters since they are dependent upon the simulation output. As we have done, to
appropriately use our complexity metrics it is necessary to characterize behavior
in the parameter spaces. This may require significant resources (computational
time).

Each individual metric, taken by itself, will have some drawbacks. However,
when considered together we believe they capture important classes of models.
As a guide, consider classifying systems based on the system structure metrics
(System Intricacy and Behavioral Capacity) vs. the metrics that are based on
simulation output (Information-Theoretic and Social Organization). We can de-
termine four different cases based on whether the values for system structure
and simulation output, respectively, are "loV' or "higY':

Low-Low These are systems which are not intricate and do not produce un-
predictable behavior. A simple linear system, such as xt = 1.1 * xt_1 may be
an example of this.

High-Low These are intricate systems that produce simple behavior. This is
interesting as the intuition is that an increase in the complexity of the causal
structure of a model should result in an increase in complexity. However,
these systems do not exhibit this characteristic.

Low-High These are systems, where a simple, non-intricate set of rules can
determine complex behavior. Examples abound of these types of models, for
instance Rule 110 in the Cellular Automata literature is a simple decision
rule but is shown to be Turing complete [3].

High-High These are systems that capture our intuitive notion that more
structurally complex systems will have higher complexity. Most real world
system, which will contain a multitude of entities interacting over continuous
time and space would fall into this category.

We have developed these metrics to be used in conjunction with each other.
Together, they can help characterize and organize different model.
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