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Dakota

*Flexible, extensible interface between simulation software and variety of
system analysis methods
• Uncertainty quantification (aleatory and epistemic)

Ifr• Sensitivity/variance analysis

• Deterministic/stochastic parameter estimation

• Design optimization

•C++ Software Toolkit

•Open source GNU LGPL

*Supports parallel computation

DAKO A 
Bcplore and predict with ccaidence.

Parameters

( DAKOTA
• Optimization
• Sensitivity Analysis
• Parameter Estimation

Uncertainty Quantification }

erformance

Computational Model 
▪ Metrics

• Repository Simulator
• Black Box Code: e.g., mechanics, circuits,
high energy physics, biology, chemistry

• Semi-intrusive Code: e.g., Matlab, Python,
multi-physics codes 

https://dakota.sandia.gov



Sensitivity Analysis in Performance Assessment

Feedback to R&D
- Identify the model inputs for which a reduction of uncertainty would most
reduce the uncertainty in the model output. [Factor Prioritiation]

Prioritize subsequent research.

Inform uncertainty analysis
Identify model inputs that could be fixed or simplified without affecting model
output. [Factor Fixing]

• Create a less computationally expensive and potentially more transparent analysis.

Understand system behavior
Check that model behavior is realistic and robust.

e.g., Saltelli et al. 2008



Dakota in GDSA Framework

Tried-and-true methods

Propagation of aleatory and epistemic uncertainties

•Latin Hypercube Sampling (with controlled input variable correlation)

•Partial Correlation Coefficients (PCC)

• The correlation between the residuals resulting from the linear regression of xj with x_i
and y with x_i, where the notation x_i means all x except xi.

Standardized Regression Coefficients (SRC) via stepwise multiple linear regression

• SRC./ = , where the bi are determined by regression y= b0 + Erlx1 bix;

•Rank transformations (PRCC and SRRC)

• Partial Rank Correlation Coefficients and Standardized Rank Regression Coefficients are
calculated after replacing the raw values of x and y with rank values.



Dakota in GDSA Framework

Adoption of new methods as standard of practice evolves

**Variance decomposition:

• Fraction of variance in the output due to the variance in an input.

• Main, higher-order, and total sensitivity indices

•Surrogate modeling techniques

Importance sampling

Development Advantages

Actively developed at Sandia National Laboratories

Open source

User-friendly post-processing

*Parallel architecture for high-performance computing



Variance Decomposition
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Sensitivity Indices

s - main effect of an input variable without variable interactions

S
V(y)

Vxi = x11)

- effect of specific variable interactions

ST- total effect of an input variable including interactions
ST1 = S1 + S12+ S13+ S123

ST2 = S2 + S12+ S23 + S123

ST 3 = S3 + S13+ S23 + S123

Model independent (theoretically)

0.2 oA 0.6 0.8
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The Challenge...

Computationally expensive

At least m(d+2) evaluations of the model, where m is sample size 1000 ) and d is
the number of uncertain inputs, to estimate the ,S.i and ST

Surrogate models

Given the large number of coupled processes and large number of epistemic
uncertain inputs typically associated with repository PA, construction of appropriate
surrogate models for calculation of sensitivity indices may be a challenge.

Using a probabilistic PA of a reference case deep geologic repository in shale as an
example, we compare sensitivity indices

1. obtained from Polynomial Chaos Expansion and Gaussian Process surrogate
models,

2. calculated from sample sizes of 50, 100, and 200 generated using incremental
Latin hypercube sampling, and

3. using raw outputs (maximum 1-129 concentrations) and log-transformed outputs.



Gaussian Process

•Predicts the most likely value of
output variable y at points on a
response surface.

Possible values for y at any point are
part of a normal (Gaussian)
distribution.

The variance of that distribution is -1
smaller close to the training points
(zero at the training points) and larger

-2.further away. -0.5 0 0.5

m(d + 2) evaluations gives Si and ST



Polynomial Chaos Expansion

Approximates values of the output
variable using a series expansion
comprised of orthogonal
polynomials.

-Obtain Si, S ..., ST from analytic
functions of the coefficients.

Number of terms: P = 
(d+p)!

where
d!p!

p is the order of the polynomial.

-Use compressive sensing to fit the
coefficients.
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Components of a Reference Case
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Shale Reference Case — Natural Barrier System
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Shale Reference Case — Engineered Barrier System

12-PWR waste package

In-drift axial emplacement

30-m drift spacing

20-m center-to-center WP spacing
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WP degradation
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Shale Reference Case —Waste Package Source Terms

Assumptions > Source Terms
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1 Model Domain
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1291 Concentration — Deterministic

Direction of forced flow
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Sampled Parameters

Parameter Description

rateWP

kSand

OE=

kBuffer

bNpKd

SNF Dissolution Rate

Mean Waste Package
Degradation Rate

Upper Sandstone k

Limestone k

Lower Sandstone k

Buffer k

DRZ k

Host Rock (Shale)

Np Kd Buffer

Np Kd Shale

Range Units Distribution

10-8 - 10-6 yr-1 log uniform

10-5.5 - 10-4.5 yr-1 log uniform

1 0-15 - 10-13

10-17 - 10-14

1 0-14 - 1 0-12

10-20 - 1 0-16

1 0-18 - 1 0-16

0.1 - 0.25

0.1 - 702

m2

m2

m2

m2

m2

m3kg-1

log uniform

log uniform

log uniform

log uniform

log uniform

uniform

log uniform

0.047 - 20 m3kg-1 log uniform



200 Realizations — [l-l29] at 4 observation points
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High-Level Analysis (Lower Aquifer)

Regardless of method and
sample size:
Max [1-129] is sensitive to the porosity
of the shale host rock (pShale).

• Further from the repository, max [1-
129] is sensitive to the permeability of
the aquifer.

• ST — 0 for kDRZ, kBuffer indicates
values of these variables could be
fixed without changing variance of the
output.
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A Closer Look (Upper Aquifer)

Using the log-transform
• S and ST of more influential input
variables are (generally) larger

• S and ST of less influential input
variables are (generally) smaller

• E Sj accounts for a larger fraction of
the variance in the output

• Consistent S. and ST

• Sample size of 50 may be large
enough to reliably estimate sensitivity
indices.

Using raw [1-129]
Greater sensitivity to waste package
degradation rate (rateWP).

• Inconsistent S. and ST

• Sample size of 200 may not be large
enough to reliably estimate sensitivity
indices.
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Conclusions ■

•Using log-transformed concentration results in larger sensitivity indices for more influential
input variables, smaller sensitivity indices for less influential input variables, and more
consistent estimates of sensitivity indices between methods (PCE and GP) and between
analyses repeated with samples of different sizes.

•However, sensitivity indices calculated using raw concentrations identify sensitivity to input
variables and variable interactions that the log-transformed results do not, perhaps because
sensitivity indices calculated using raw concentrations discriminate amongst influences
contributing to variance at the upper end of the concentration range.



Thanks to the DOE NE-8 Spent Fuel and Waste
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References

1. A. SALTELLI et al., Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd., England (2008).

2. B. M. ADAMS et al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation,
Uncertaino PuantOcation, and Sensitivity Analysis: Version 6.8 User's Manual. SAND2014-4253. Sandia National Laboratories,
Albuquerque, NM (2018).

3. A. SALTELLI et al., 2010. "Variance based sensitivity analysis of model output. Design and estimator for the total
sensitivity index". Computer Physics Communications, 181(2), 259-270 (2008).

4. B. SUDRET, "Global sensitivity analysis using polynomial chaos expansions". Reliability Engineering & System Sgfe0, 93(7),
964-979 (2008).

5. V. G. WEIRS et al., "Sensitivity analysis techniques applied to a system of hyperbolic conservation laws". Reliability
Engineering & System Safety, 107, 157-170 (2012).

6. L. LE GRATIET, L., S. MARELLI and B. SUDRET, "Metamodel-Based Sensitivity Analysis: Polynomial Chaos
Expansions and Gaussian Processes," in R. Ghanem et al. (Eds.), Handbook of Uncertaino Quantffication (pp. 1289-1325),
Springer International Publishing, Switzerland (2017).

7. D. BECKER et al., Proceedings of the International High Level Waste Conference, Knoxville, TN, April 14-18 (2019).

8. P. E. MARINER et al., Advances in Geologic Diposal System Modeling and Shale Reference Cases. SFWD-SFWST-2017-000044 /
SAND2017-10304R. Sandia National Laboratories, Albuquerque, NM (2017).

9. P. C. LICHTNER et al., PFLOTRAN User Manual, http://www.documentation.pflotran.org, 2018.

10. J. C. HELTON and F. J. DAVIS, "Latin hypercube sampling and the propagation of uncertainty in analyses of complex
systems". Reliability Engineering & System Safety, 81(1), 23-69 (2003).

11. C. J. SALLABERRY, J.C. HELTON, and S. A. HORA, "Extension of Latin Hypercube Samples with correlated
variables." Reliability Engineering & System Safety, 93(7), 1047-1059 (2008).


