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Dakota

*Flexible, extensible interface between simulation software and variety of
system analysis methods
* Uncertainty quantification (aleatory and epistemic)
*‘ Sensitivity/variance analysis
* Deterministic/stochastic parametet estimation

* Design optimization

(" DAKOTA )

*C++ Software Toolkit ’ gg,tsl;?ilvz;;":lnalysis
* Parameter Estimation

’Open Ssource GNU LGPL \’ Uncertainty Quantification )

; Parameters erfoxmance
*Supports parallel computation T T w Metrics

A

* Repository Simulator
* Black Box Code: e.g., mechanics, circuits,

high energy physics, biology, chemistry J

* Semi-intrusive Code: e.g., Matlab, Python,
multi-physics codes

https://dakota.sandia.gov

) DAKOTA

Explore and predict with confidence.




Sensitivity Analysis in Performance Assessment

Feedback to R&D

* Identify the model inputs for which a reduction of uncertainty would most
reduce the uncertainty in the model output. [Factor Prioritization)

* Prioritize subsequent research.

Inform uncertainty analysis

* Identify model inputs that could be fixed or simplified without affecting model
output. [Factor Fixing]

* Create a less computationally expensive and potentially more transparent analysis.

Understand system behavior

* Check that model behavior is realistic and robust.

e.g., Saltelli et al. 2008




Dakota in GDSA Framework

Tried-and-true methods

*Propagation of aleatory and epistemic uncertainties
*Latin Hypercube Sampling (with controlled input variable correlation)

*Partial Correlation Coefficients (PCC)

* The correlation between the residuals resulting from the linear regression of Xj with X j
and y with x_j, where the notation x.. ; means all X except X;.

*Standardized Regression Coefficients (SRC) via stepwise multiple linear regression
* SRC; = %jbj , where the 4; are determined by regression J = by + Z;lil b;x;

*Rank transformations (PRCC and SRRC)

* Partial Rank Correlation Coefficients and Standardized Rank Regression Coefficients are
calculated after replacing the raw values of x and y with rank values.




Dakota in GDSA Framework

Adoption of new methods as standard of practice evolves

* *Variance decomposition:
* Fraction of variance in the output due to the variance in an input.

* Main, higher-order, and total sensitivity indices
*Surrogate modeling techniques

*Importance sampling

Development Advantages

*Actively developed at Sandia National Laboratories
*Open source

*User-friendly post-processing

*Parallel architecture for high-performance computing




Variance Decomposition
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The Challenge...

Computationally expensive

At least m(d+2) evaluations of the model, where 7 is sample size (= 1000 ) and 4 is
the number of uncertain inputs, to estimate the S; and S

Surrogate models

Given the large number of coupled processes and large number of epistemic
uncertain inputs typically associated with repository PA, construction of appropriate
surrogate models for calculation of sensitivity indices may be a challenge.

Using a probabilistic PA of a reference case deep geologic repository in shale as an
example, we compare sensitivity indices

1. obtained from Polynomial Chaos Expansion and Gaussian Process surrogate
models,

2. calculated from sample sizes of 50, 100, and 200 generated using incremental
Latin hypercube sampling, and

using raw outputs (maximum [-129 concentrations) and log-transformed outputs.

[@N)




Gaussian Process

*Predicts the most likely value of
output variable y at points on a
response surface.

*Possible values for y at any point are
part of a normal (Gaussian)
distribution. R

*The variance of that distribution is 11
smaller close to the training points
(zero at the training points) and larger
further away. 2 05

0.5 1

‘m(d + 2) evaluations gives §;and S



Polynomial Chaos Expansion

‘Approx1mates values of the output
variable using a series expansion
comprised of orthogonal
polynomials.

*Obtain S, §, ..., $ from analytic

functions of] the coefﬁc1ents
*Number of terms: P = (dd-:_—;')!,
p 1s the order of the polynoiﬂial.

*Use compressive sensing to fit the
coetficients.

where

legendre palynomials
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Components of a Reference Case
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Shale Reference Case — Natural Barrier System
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Shale Reference Case — Engineered Barrier System

12-PWR waste package
In-drift axial emplacement
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Shale Reference Case —Waste Package Source Terms

Assumptions > Source Terms
60 GWD/MT burn-up
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Model Domain

Pressure gradient -12 Pa/m
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1291 Concentration — Deterministic
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Sampled Parameters
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200 Realizations — [I-129] at 4 observation points
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High-Level Analysis (Lower Aquifer)

Regardless of method and
sample size:

* Max [I-129] is sensitive to the porosity
of the shale host rock (pShale).

* Further from the repository, max [I-
129] is sensitive to the permeability of
the aquifer.

* St ~ 0 for kDRZ, kBuffer indicates
values of these variables could be
tixed without changing variance of the
output.
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A Closer Look (Upper Aquifer)

Using the log-transform

* $;and S of more influential input

variables are (generally) larger

* S;and Sy of less influential input

variables are (generally) smaller

I i accounts for a larger fraction of
the variance in the output

* Consistent §;and §;

* Sample size of 50 may be large
enough to reliably estimate sensitivity
indices.

Using raw [I-129]

* Greater sensitivity to waste package
degradation rate (rateWP).

* Inconsistent S, and S

* Sample size of 200 may not be large
enough to reliably estimate sensitivity
indices.
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Conclusions

*Using log-transformed concentration results in larger sensitivity indices for more influential
input variables, smaller sensitivity indices for less influential input variables, and more
consistent estimates of sensitivity indices between methods (PCE and GP) and between
analyses repeated with samples of different sizes.

*However, sensitivity indices calculated using raw concentrations identify sensitivity to input
variables and variable interactions that the log-transformed results do not, perhaps because
sensitivity indices calculated using raw concentrations discriminate amongst influences
contributing to variance at the upper end of the concentration range.




QUESTIONS!?

Thanks to the DOE NE-8 Spent Fuel and Waste
Science and Technology campaign for

supporting development of GDSA Framework.
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