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Abstract
We present a model that predicts the macro-scale temperature-de-
pendent interfacial shear strength of 2D materials like MoS2 based on
atomistic mechanisms and energetic barriers to sliding. Atomistic sim-
ulations were used to systematically determine the lamellar size-de-
pendent rotation and translation energy barriers to accurately predict
a broad range of experimental data. This framework provides insights
about the origins of characteristic shear strengths of 2D materials.

Temperature Dependent Shear Strength
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Simulation Methods
MD & NEB

Molecular Dynamics (MD)
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Nudged Elastic Band (NEB)
Commensurate interface

(higher energy barrier/higher µ)
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Barriers to Translation & Rotation
Run-in processes form large flakes of MoS2 from initially amorphous states, as

such it is useful to understand dependence of these barriers on flake size.
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Predicting S(T) with Energy Barriers

The probability (pn) and failure (f) The probability to slide and
to overcome a barrier: fail to slide (friction):

pn A exp

fi 1 pn

(
AEn
k TB j

Pslide prpi+ frpc

f slide 1

1

P slide

(PrPi+ .frPc)

successfully rotate; failure to rotate;
T=OK slide incommensurately slide commensurately

shear strength  
(

S(T)= So 1-exp
( AEI +

kBT )
exp + exp

simple model prediction

full model prediction

( AE + AE

kBT j

Converged barriers (Fig. 4) infer model based on two routes of accomodating

shear: incommensurate and commensurate translation. Typical Arrhenius de-

scribes probability of lamella sliding diffusively - friction, however, is associated

with application of stress to induce sliding, so we consider failure to slide ther-

mally (1-exp). Fit of simplified model (Fig. 1) also suggest incommensurate

translation is most important factor.

Wear & Thermally
Activated Processes
Wear rates measured in the

temperature range 100-300 K

[3] were low, with specific wear

rates in the range K = 1x1 0-6 to

1x10-5 mm3/Nm, indicating

monolayer removal rates.

Above room temp, wear in-

creases, representing an upper

bound of our model.
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Sputtered MoS,
- 1N normal force
- 1000 sliding cycles
- 10 mm/s sliding speed

-1 ML per cycle ctmi=
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