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Abstract

We present a model that predicts the macro-scale temperature-de-
pendent interfacial shear strength of 2D materials like MoS, based on
atomistic mechanisms and energetic barriers to sliding. Atomistic sim-
ulations were used to systematically determine the lamellar size-de-
pendent rotation and translation energy barriers to accurately predict
a broad range of experimental data. This framework provides insights
about the origins of characteristic shear strengths of 2D materials.
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Simulation Methods
MD & NEB

‘Molecular Dynamics (MD)

/Nudged Elastic Band (NEB)
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Barriers to Translation & Rotation

Incommensurate interface
(lower energy barrier/low p)

Run-in processes form large flakes of MoS, from initially amorphous states, as

such it is useful to understand dependence of these barriers on flake size.

commensurate incommensurate
120 _ 11,393 120 S —— 1,393
= o flake size (nm?): =
@) I N 1 (@) 2.0}
& 100 @ —012 1,760 @ % 100 1,160
~ s () ] ~
> | =X — 0.58 c > 10} ]
e e 254 5 € 7\
£ g 2 asa 198 T £ 80| S 928
> L o5 : ] > > 0.0 ; I
o 1§ — 1754 = D
| = i (]
S 60| £ —O6%8  g06 3 5 60 N 696
© I | O g
= | - s £ =
Y 40 - 1464 S L 40 2 464
2 | s 5
) , N\ | = o .
2 20 - N\ 1232 2 2 20| k= 232
S : - S \ %
0° N~ 0 0 AN , —_— 0
0 005 0.10 0.15 0.20 0.25 030 0.35 00 0.1 02 03 04 05 06 0.7 08 09 1.0
translation distance in lattice units (1 LU =5.47 A) translation distance in lattice units (1 LU = 5.47 A)
rotation
120 1393 120 1,393
’g — f_ . A approx. barriers:
2100 3 1160 & § 100 T =418K  -1,160
S 7 % ] c -'r-c‘ A T=143 K
e & | 5 3 T =15K
= Gl - 1928 @ @ 80 - i - 928
9 B 8 — ~— ]
v L 5 ] ® o
S 60 =| , 169 3 R 60 - 696
5 Y/ _' ® 3
= ; | = commensurate
S 40 4 S = 40 | 464
a |/ i S5 | ‘
= 20 | /F b g 20 - rotatlon\ -
© - 0 g
g = w " incommensurate ® A A
0 10 20 30 107 10° 10 102 103

rotation or misfit angle (°) flake contact area (nm?)

[1] C. G. Dunckle, M. Aggleton, J. Glassman, and P. Taborek, Tribol. Int. 44, 1819 (2011).
[2] I. L. Singer, R. N. Bolster, J. Wegand, S. Fayeulle, and B. C. Stupp, Appl. Phys. Lett. 57, 995 (1990).
[3]1T. F. Babuska, A. A. Pitenis, M. R. Jones, B. L. Nation, W. G. Sawyer, and N. Argibay, Tribol. Lett. 63, 1 (2016).

() .Z ‘@anjesadwa) 1usjeAinba

(). ‘24njeiadwal JusjeAinba

SAND2019-4359C

Predicting S(T) with Energy Barriers

The probability (p ) and failure (f )
to overcome a barrier:

The probability to slide and
fail to slide (friction):

x| ~AE, Pgiae = D, 0; + 1, P

= ACX

Fr P k,T Fstigze =1 Paiae
f.=1-p =1—(Prl?,-+frpc)

successfully rotate; failure to rotate;

T=0K slide incomlmensurately slide comrrI\ensurater
shear strength o
T~ AE + AE —AE AE + AE
S(T)=S,|1-exp| — ~|—exp “l+exp| - -
k,T k,T k,T

simple model prediction

full model prediction

Converged barriers (Fig. 4) infer model based on two routes of accomodating
shear: incommensurate and commensurate translation. Typical Arrhenius de-
scribes probability of lamella sliding diffusively - friction, however, is associated
with application of stress to induce sliding, so we consider failure to slide ther-
mally (1-exp). Fit of simplified model (Fig. 1) also suggest incommensurate
translation is most important factor.

Wear & Thermally

. 10%
Activated Processes Sputtered Mos,
- 1000 sliding cycles

- 10 mm/s sliding speed

Wear rates measured in the
temperature range 100-300 K
[3] were low, with specific wear
rates in the range K= 1x10° to
1x10°>  mm°*/Nm, indicating
monolayer  removal  rates.
Above room temp, wear in-
creases, representing an upper
bound of our model.
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