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2D layers of transition metal dichalcogenides (TMDs)
are a proposed alternative to conventional
semiconductors for constructing junctions in next-
generation devices. MoS2. INS2, MoSe2, model
TMDs, show favorable properties for electronic and
optoelectronic applications including high on-off
ratios, high photoluminescence quantum efficiency,
high photogain and photoresponse. The open
experimental questions we address in this study,
relevant for device performance and considerations,
include:

• Evolution of work function, 0, with layer number

• Doping of TMD on Si02

• The band alignment among MoS2, WS2, & MoSe2

So far, environmental effects (chemical modification
due to exposure, substrate interactions) have
prevented a clear, systematic understanding of these
properties via experiment.

Band alignment of MoS2, WS2, & MoSe2: a complete pictur

The ionization energy displays a progressive decrease from MoS2, to WS2, to MoSe2, in
agreement with reported density functional theory calculations. We deduce that a
heterojunction comprising any of the three TMD monolayers would form a staggered (type-ll)
band alignment in the absence of the interlayer coupling.
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PEEM intensity images of MoSe2, WS2, and MoS2 acquired at 0.1 eV below
Evo, of the 1 ML area. Higher photoemission intensity is shown as darker gray.
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Band edge diagrams of as a function of their thicknesses. The hashed boxes represent
the conduction bands, and the solid boxes represent the valence bands. The right
figure compares experimentally determined band diagrams to those of DFT modeling)
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Local Photoemission Measurement using
Spectroscopic PEEM

Spectroscopic PEEM features:
• Spatial resolution: 10 - 15 nm
• Spectral resolution: 200 meV
• Electron/Photon/Thermal excitation
• Real-time imaging of processes in

situ
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Two modes of photoemission measurement:
• Fixed energy, local PES

(laser) A = 213 nm, hv = 5.82 eV
• Variable energy, local PEY

P ES: Photoemission Spectra
Photoemitted electron
spectra

P EY: Photoemission Yield
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PES & PEY measurements of layer-dependent work function & ionization energy for MoS
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Relative vacuum level (E„ac) and valence band edge increase with
each additional layer, establishing a layer-dependent surface
potential and work function increase with increasing layer number.
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We obtain the brnding energy of the valence band edge relative
to the vacuum level and construct an experimental band diagram
that shows the local ionization energy measured with PES.
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Despite agreement in PES and PEY results for 13A4L, there are disparities
for i1A4L and /2Ak (see red bidirectional arrows in the experimental band
diagram). Considering the mechanisms that differ between the two
modes of photoemission measurement, we rely on our PES results for a
more accurate determination of ionization energy.
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