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2D layers of transition metal dichalcogenides (TMDs)
are a proposed alternative to conventional
semiconductors for constructing junctions in next-
generation devices. MoS,, WS,, MoSe,, model
TMDs, show favorable properties for electronic and
optoelectronic applications including high on-off
ratios, high photoluminescence quantum efficiency,
high photogain and photoresponse. The open
experimental questions we address in this study,
relevant for device performance and considerations,
include:

+ Ewvolution of work function, ¢, with layer number
+ Doping of TMD on SiO,
+ The band alignment among MoS,, WS, & MoSe,

So far, environmental effects (chemical modification
due to exposure, substrate interactions) have

prevented a clear, systematic understanding of these
Qroperties via experiment.

The ionization energy displays a progressive decrease from MoS,, to WS, to MoSe,, in
agreement with reported density functional theory calculations. We deduce that a
heterojunction comprising any of the three TMD monolayers would form a staggered (type-II)
band alignment in the absence of the interlayer coupling.
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PEEM intensity images of MoSe,, WS,, and MoS, acquired at 0.1 eV below
E, of the 1 ML area. Higher photoemission intensity is shown as darker gray.
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Band edge diagrams of as a function of their thicknesses. The hashed boxes represen’r
the conduction bands, and the solid boxes represent the valence bands. The right
figure compares experimentally determined band diagrams fo those of DFT modeling.
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Relative vacuum level (E,,.) and valence band edge increase with
each additional layer, establishing a layer-dependent surface
potential and work function increase with increasing layer number.

Surface distance (um)
We obtain the binding energy of the valence band edge relative
to the vacuum level and construct an experimental band diagram
that shows the local ionization energy measured with PES.
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Spectroscopic PEEM

Spectroscopic PEEM features: Sample
Spatial resolution: 10 - 15 nm

« Spectral resolution: 200 meV
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Two modes of photoemission measurement:
* Fixed energy, local PES
(laser) A =213 nm, hv = 5.82 eV
« Variable energy, local PEY hv. o€

PES: Photoemission Spectra
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Despite agreement in PES and PEY results for /3, , there are disparities
for I, and I, (see red bidirectional arrows in the experimental band
diagram). Considering the mechanisms that differ between the two
modes of photoemission measurement, we rely on our PES results for a

more accurate determination of ionization energy.
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