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• Knocking is caused by the strong autoignition of the fuel-oxidizer charge "end-gas"
resulting in pressure oscillations.

• Autoignition processes are influenced by temperature, pressure, fuel concentration,
oxygen concentration, and the temporal evolution of these parameters.

• Does EGR effect all fuels equally?

• A matrix of three fuels and nine diluent combinations used to investigate competing
effects in the previous study. (SAE 2018-01-1677)

Alkylate
High

Aromatic
E30Engine Compression

Ratios
12:1, 10:1

1 11 10
Fuels (RON = 98) Alkylate, High Aromatic, E30

RON 98 98 98

Diluents Air, N2, CO2, H20, Dry CSP, Wet CSP, MON 97 87 88

Ethanol [vol.%] 0 0 30Air + CSP, EGR, Air+EGR
Aromatics [vol.%] 0 31 8

Dilution Levels Qim = 0.92, Om = 0.85
T90 [°C] 106 158 155
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Research Engine used for Experiments
(Recap of Previous Study: SAE 2018-01-1677)

• DISI, 0.55 L displacement.

• High-swirl operation.

• Low residuals.

• Conventional high-energy ignition system.

• Well-mixed charge operation.

• CR = 12:1 or 10:1.

— Use adaptor plates with various thicknesses.

 /
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Definition of Trace Autoignition
(Recap of Previous Study: SAE 2018-01-1677)
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• Knock vs. Autoignition: Knocking is the phenomena which is a problem for SI engines.

• However, the problem is rooted in the autoignition of the end-gas.

• To begin to decouple these two phenomena, the phasing required for end-gas autoignition
is measured by observing the heat-release characteristics of the charge.

— Increased rate of decay of the heat release rate indicates light autoignition event.
• Knock-Iimited CA50 is different from Trace Autoignition CA50.

(KL-CA50 is determined based on Knock Intensity.)
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Knock-Limited CA70 vs Trace Autoignition CA70
(Recap of Previous Study: SAE 2018-01-1677)
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• E30 and High Aromatic Fuels were able to operate with phasing advanced from the
autoignition limit.

• Indicates that these fuels can tolerate light autoignition without exceeding knock limit.

• Conversely, Alkylate cannot operate in advance of the autoignition limit without exceeding
the knock limit under most conditions.

— Suggests that this fuel is less tolerant of end-gas autoignition. Why?
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Numerical Study:
Conditions of Interest & Methodology

• Numerical study was conducted for the
combinations of CR, diluents, and three fuels
listed in the table.

• Closed, homogeneous, adiabatic reactor models
used to model end-gas.

• Experimental pressure trace imposed to mimic
compression (due to piston and flame induced)

— Experimental pressure trace was downsampled
to 10% most advanced cycles.

— Resulting heat release cases with observable
autoignition shown in figure.

• Included trace species in residual gas such as
NO which plays significant role in autoignition
chemistry.

CR 10:1, 12:1

Diluent None, Air, CO2, N2

Dilution level Om = 0.85

Fuels Alkylate, High Aromatics, E30

s 1 11 10

RON 98 98 98

MON 97 87 88

Ethanol fvol %1
80
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a 40  
re
ce

20

o
-10 10 20 30 40

n

-10 0 10 20 30 40
Crank Angle [°CA] Crank Angle [°CA]
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Conventional 0

0 =

Definitions on Mass-Based Equivalence Ratio, Autoignition
Timing, and Burned Mass-Fraction (MFB) at Autoignition Timing

(%) Actual

(P/A)Stoichiometric

F = Fuel mass.

A = Air mass.

C = Gas Charge Mass
(Example: Air + N2).

Mass-based 0

Orn

(F/C) Actual 

(F// A)Stoichiometric
Diluent

MM. 

None
(baseline)

Air

N2, CO2

0.85 0.85

1 0.85

• Om is a measure of chemical energy per reactant
mass, regardless of type of diluent.

• Allows plotting data for operation lean and with
EGR on the same scale.

80

60

a 40
cc
ce 20

< 0
-10

80

caj 60

"a 40
IX 20

—Cycle 88
—Cycle 270
— Cycle 469

0 10 20 30 40
Crank Angle [°CA]

0 0 0 0 0
CN CO CO

Mass Burned [%]

0
0

SAE 2019-01-1140 7



xlAit 2A0P1R9IL 9-11

DETROIT

Study Effects of Thermal Stratification in the End Gas:
Previous HCCI Work

• Natural thermal stratification is created by heat-transfer from the compressed
and heated gas to the surrounding combustion chamber walls.

— Planar thermal imaging
SAE 2012-01-1111.

— Cold pockets entrain
from walls.

1 rer  ̀ 77111"<qo 

30 40 50

AT [K]

• Thermal broadening provides an opportunity for sequential autoignition.

• Shown to reduce HRR in HCCI engines.

• Could reduce knock intensity in SI engines?

➢ Heat transfer and boundary layer effects mimicked by initializing six
reactor models with 10K variations in initial temperature (for a 50K span).

SAE 2019-01-1140 8
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Comparison of Constant Volume Ignition-Delay Maps for
Three RON 98 Fuels
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• The Alkylate fuel is the only fuel that exhibits strong NTC behavior.

• Region of reduced temperature sensitivity is wider for the High Aromatic fuel compared
to the E30 fuel.

- Suggests differences in autoignition chemistry despite having nearly identical RON and MON.

SAE 2019-01-1140 9
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Temporal Evolution of Thermal Stratification for
Three RON 98 Fuels (Non-diluted, CR 10:1)
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• Temperature-pressure (TP) trajectories of lower temperature zones
traverses through and spend significant amount of time in NTC regime.

• Chemical reactions play important role in altering thermal width.
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Temporal Evolution of Thermal Stratification for
Three RON 98 Fuels (Non-diluted, CR 10:1)
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• The thermal width of the Alkylate fuel shrinks significantly while
that of the E30 fuel does not show a noticeable change.

- This is a consequence of a greater temperature rise in the coldest zone of the
Alkylate fuel compared to the other zones.

TIsentropic

TCHEMKIN
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Effect of Fuel Type on Thermal Stratification

(Non-diluted, CR 10:1)

• The coldest zone of Alkylate exhibits much stronger
LTHR than the other fuels.

- Explains the greater temperature rise in
the coldest zone of the Alkylate fuel.

• The peak magnitude of LTHR of E30 increases
moderately with a reduction of the initial temperature.
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Comparison of Sequential Autoignition and
lts Relevance to Experimental Results (Non-diluted, CR 10:1)
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Average + a
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• (CA90 - -rig) —> Time allowed for end-gas to be consumed by
deflagration after adiabatic core autoignites.

• Comparison with the (CA90 - -rig) indicate a T probability of
Alkylate's reactants in colder temperature zones to autoignite
before deflagration reaches these cooler areas.

- Hypothesized that with a faster sequential autoignition, less
autoigniting end-gas mass is sufficient to induce pressure oscillations.
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Effect of Compression Ratio on Thermal Stratification
(Physical effect)
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At any given combination of fuel and CA50,
CR 12:1 case tolerated a larger autoigniting end-gas mass.

- Hypothesized that for the higher CR, heat transfer in the end-gas
region is stronger and enhances the thermal stratification.

- IMEPg at CR = 10:1 and 12:1 were -37.9 kPa and -51.0 kPa.
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Effect of Compression Ratio on Thermal Stratification
(Chemical effect; CO2-diluted condition)
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• As explained in SAE 2018-01-1677,
the combination of Alkylate and CR
12:1 leads to increased temperature
rise due to chemical reactions in
lower temperature zones .
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Effect of Compression Ratio on Thermal Stratification
(Chemical effect; CO2 diluted condition)
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• The slope of the linear fit and
differences in the slopes of two CRs
agree well with the characteristics of
temperature rise due to chemical
reactions.

- Maintaining thermal stratification
despite ongoing early autoignition
reactions is important for achieving
sequential autoignition.

• However, the sequential autoignition
itself is not sufficient to explain
some of the differences in KL-CA50
of different fuels.

- Suggests that both the sequential
autoignition and a reduction in the
overall temperature rise due to
chemical reactions are important.
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When N2 or CO2 is added, the
contours of the constant-volume
ignition delay are shifted, indicating
that the reactants become less
reactive for a given initial T and P.

• The thermal width of the CO2-diluted
case exhibits the smallest change
when phasing spans from TDC to
CA50.

- Reduced reactivity due to 1, Tcomp,
y, and 02 mole fraction.

- Reduced residence time due to
advanced CA50.

- Combined effects of a lower
reactivity and faster traverse through
TP space compound to allow a
strong advancements of CA50.
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• Compare diluted cases to their baseline conditions,
and how this corresponds to the change in Trace
Autoignition CA50.

• Dilution with air results in a greater temperature
increase in the end-gas compared to the baseline
condition, whereas dilution with CO2 significantly
reduces the temperature rise in the end-gas.

• Strong correlation confirms that the temperature is
the key parameter that triggers autoignition.
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• KL-CA50 — Trace Autoignition CA50

- Indicates how far CA50 can be advanced without
incurring strong knock relative to CA50 at which end-gas
autoignition starts to occur.

• When the model indicates a more sequential
autoignition for a given amount of thermal stratification,
engine can be operated with a KL-CA50 that is further
advanced beyond the Trace Autoignition CA50.
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• Thus, for a diluent to be effective in suppressing knock and enable more advanced KL-CA50,

- achieve a reduction in the end-gas temperature to achieve a more advanced Trace Autoignition CA50

- induce a more sequential autoignition in the end-gas to enable the combustion phasing to be
advanced relative to Trace Autoignition CA50 without incurring acoustic knock

• A(KL-CA50) = A(Trace Autoignition CA50) + A(KL-CA50 - Trace Autoignition CA50)

SAE 2019-01-1140 20
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(1) Effect of Fuel Type
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• Due to the inherent NTC character of Alkylate's autoignition, its LTHR becomes
stronger in regions that are cooler than the adiabatic core, and this counteracts a
given thermal stratification, effectively making the end-gas more thermally uniform.

SAE 2019-01-1140 21



XWC 2AOPIR9IL 9 -11

DETROIT

Conclusions:
(2) Effect of Compression Ratio

Physical Effect
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• It is speculated that the smaller squish height at CR = 12:1 increases the heat transfer from
the end-gas to the wall, which broadens the thermal width and promotes a sequential
autoignition event with reduced peak HRR.

• Change in CR shifts TP trajectory and residence time spent in different regimes and hence
alters initially-present thermal stratification.
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Conclusions:
(3) Effectiveness of Diluents on Knock Mitigation
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• To suppress knock with dilution, it is required to reduce temperature rise due to chemical
reactions compared to the baseline condition without any dilution.

• Further advancement of KL-CA50 without incurring acoustic knock can be accomplished
by inducing a more sequential autoignition in the end-gas.

• A(KL-CA50) = A(Trace Autoignition CA50) + A(KL-CA50 - Trace Autoignition CA50)
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Thank you for your kind attention!
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Implication of Sequential Autoignition on Knock Intensity Distribution
(Non-diluted, CR 12:1)
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• Although the selected conditions have nearly

identical average Kl, CA50 and a of CA50,
Kl vs CA50 presents very distinct Kl distributions.

• Predicted autoignition in lower temperature zones
occur more sequentially for E30.

- Supports hypothesis that sequential autoignition
due to thermal stratification helps to mitigate
acoustic knock of autoigniting cycles.
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Effect of phi-stratification
(Non-diluted, CR 12:1)

• To study effect of fuel stratification in mixture, it was necessary to quantify the effect of HoV
and y on temperature.

• Utilized Chemkin to separate the contribution of HoV and y effects on changes in compressed
gas temperature near °CA at which simulation is initiated.

• Variation of by ±0.2 resulted in less than O.61°CA change in autoignition timing once the
estimated temperature is compensated for effect of HoV and y.
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