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Introduction |

» A/l objects at finite temperature radiate due to fluctuations ‘
of their constituent atoms.

" Considerable power radiated from waste heat is available for |
recovery and conversion.




|I\/I0tivation

New nanoscale thermal to electric energy conversion method based on
direct conversion of radiated infrared light from a moderate
temperature thermal source.

= Radiative energy harvesting from a thermal source:
— View of thermal source.
— Scalable to large area.

" Direct conversion: IR photon converted to electrical current
— Infrared metamaterials for large area photonics coupled to ->
— Epsilon near zero materials for enhanced field confinement
— Ultrafast tunneling for rectification and charge separation.

" Integrated tunnel diode
— Photon-assisted tunneling rectification in MOS tunnel diode.
— Leverages CMOS processes to make and improve device.
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Applications

Power for unattended sensors

Radioisotope Thermal
Generators

Unmanned Aerial Vehicles

Thermal
Energy
Harvesting

Commercial Military &

Space
Apps

& Sensor
Apps

Hybrid Automotive Cooling of Electronics

Enhanced PV



Epsilon near zero photonic device LB

" |dea: Couple material ENZ and photonic

resonances to enhance transverse fiel
confinement in nanoscale tunnel gap.

=" CMOS compatible photonic coupled
large area tunnel diode

— Based on MOS capacitor with 3-4 nm
tunnel oxide.

— Simplest photonic antenna structure is
metal grating.

" Photon-assisted tunneling current
model.

— Transverse confined Electric field in gap

enhances asymmetric tunneling current.

Simple large area grating

P=3 pm

W=1. mm
- -

MOS tunnel dlode
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|Infrared LO/TO phonon in SiO,

Blackbody spectral exitance
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|Resonant Grating Antenna

P=3 pm _| O
W=18um

Parallel Plot

3 nm tunnel oxide 26
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IFieId Confinement in gap

Planewave incident on structure Enhance Ez field in 3 nm gap.
Polarized along x (grating) direction.
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|Fie|d Confinement in gap




|I\/Ieasured Infrared Photoresponse
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[1] P. S. Davids, R. L. Jarecki, A. Starbuck, D. B. Burckel. E. A. Kadlec, T. Ribaudo, E. A. Shaner, and
D. W. Pcters. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. )
Nature Nanotechnology, 10(12):1033, 2015. Paul S. Davids

= Sample 3mm x 3mm
large area 1D grating
coupled tunnel diode.

= Tunable QCL tuned
across IR resonance.

= QObserved photo-current
for TM polarization
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|2D IR Antenna coupled tunnel diode

9 Complex 2D modal structure with TE and TM
- resonances.
=
A Oxide Oxide 2D Cross-dipole 2D Cross-dipole

inair oxide fill
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|Photocurrent spectrum at V:O
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|Photon—assisted tunneling

Mnsu“\a‘tm‘ Transfer Hamiltonian (Bardeen)

[1] P. S. Davids and J. Shank. Density matrix approach to photon-assisted tunneling in the transfer hamil-
tonian formalism. Phys. Rev. B, 97:075411, Fcb 2018. y4



|Photon—assisted tunnel current

= First order expansion of single particle density matrix in Bardeen’s transfer
Hamiltonian approach.

= Analytic expression for DC current.

= Photon-assisted tunnel current for partially coherent thermal radiation.

+(w — —w)

absorption emission

[1] J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett., 6:57-59, Jan 1961.



|Photon absorption & emission

Photon emission in barrier Photon absorption in barrier




Parametric Study of PAT Current

Uniform barrier model

Locus of current sign change
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Image force barrier lowering
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|Photon—assisted IV characteristics _1 y
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|Infrared Rectenna Power Supply (IRPS)

Half-wave rectifier

Thermal Source | maps ~ Rectenna Load
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Fig. 9.1. A basic d.c. power-supply transformer and HW rectifier
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Fig. 9.2. Waveforms in HW rectifier circuit: (a) a.c. input waveform, (b) rectified

unidirectional waveform across load.




|Radiometric thermal measurement

Energy conversion only needs to view thermal source

Linear stage

Packaged devices for thermal test

Chilled Sample Stage
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|Generated Voltage across Load Resistance
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[1] J. Shank, E. A. Kadlec, R. L. Jarecki, A. Starbuck, S. Howell, D. W. Peters, and P. S. Davids. Power
generation from a radiative thermal source using a large-arca infrared rectenna. Phys. Rev. Applied,
9:054040, May 2018.
Paul S. Davids
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| Power generation
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|Impedance match

Peak power generated for load resistor matched to zero bias diode resistance.
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Next generation rectenna |
Diced for packaging ‘

Amm X 14mm

- Multiple designs with varying size

f Evaluate area scaling and yield



|Comparison of 15t Gen devices to 2" Gen
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Enhanced near-tield radiative heat transter !

Planar device

Heated sphere




Conclusions

" Developed a large-area nanoantenna coupled tunnel diode rectifier
that resonantly converts infrared radiation into photocurrent.

" Demonstrated power generation from a thermal source in a large-
area antenna coupled tunnel diode.

" Developed a model based on photon-assisted tunnel

— Shows clear indication of sign change in current as a function of radiation
temperature.

— Qualitative agreement with simple uniform barrier model predicts IV vs
temperature characteristics.
= Future:
— New devices using full design capability of CMOS shows large improvement
— Near-field enhanced power generation
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