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1 Outline
■ Intro & Motivation

■ Epsilon near-zero enhanced photonic coupling and tunneling

■ Photon-assisted tunneling

■ Electrical power generation from radiated waste heat

■ Outlook and Conclusions



1 Introduction
• All objects at finite temperature radiate due to fluctuations
of their constituent atoms.

■ Considerable power radiated from waste heat is available for
recovery and conversion.



Motivation
New nanoscale thermal to electric energy conversion method based on
direct conversion of radiated infrared light from a moderate
temperature thermal source.

■ Radiative energy harvesting from a thermal source:
— View of thermal source.
— Scalable to large area.

■ Direct conversion: IR photon converted to electrical current
— Infrared metamaterials for large area photonics coupled to ->
— Epsilon near zero materials for enhanced field confinement
— Ultrafast tunneling for rectification and charge separation.

■ Integrated tunnel diode
— Photon-assisted tunneling rectification in MOS tunnel diode.
— Leverages CMOS processes to make and improve device.
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l Epsilon near zero photonic device
• Idea: Couple material ENZ and photonic
resonances to enhance transverse fiel
confinement in nanoscale tunnel gap.

• CMOS compatible photonic coupled
large area tunnel diode
— Based on MOS capacitor with 3-4 nm
tunnel oxide.

— Simplest photonic antenna structure is
metal grating.

• Photon-assisted tunneling current
model.
— Transverse confined Electric field in gap
enhances asymmetric tunneling current.
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l Infrared [OM phonon in S102
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Resonant Grating Antenna

Overlapping resonance
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1Field Confinement in gap
Planewave incident on structure

Polarized along x (grating) direction.
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1 Field Confinement in gap
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Measured Infrared Photoresponse
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12D IR Antenna coupled tunnel diode
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l Photocurrent spectrum at V 0
Measured Angular

Photocurrent Spectra
at 11=0

Simulated
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Photon-assisted tunneling
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l Photon-assisted tunnel current
• First order expansion of single particle density matrix in Bardeen's transfer

Hamiltonian approach.
• Analytic expression for DC current.
• Photon-assisted tunnel current for partially coherent thermal radiation.
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Photon absorption & emission

Photon emission in barrier
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I lmage force barrier lowering
Vacuum Level
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Photon-assisted IV characteristics
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Infrared Rectenna Power Supply (IRPS)

Thermal Source

Half-wave rectifier

mans Rectenna

Fig. 9.1. A basic d.k:. power-supply transformer and 11W rectifier

Rectification in ideal diode

V

Vasin(211 ft)

.11R II f\ 1.\ 

Fig. 9.2. Waveform in IRV rcctificr circuit: (a) a.c. input wavetorm, (b) rectified

unidircctional waveform across load.



Radiometric thermal measurement

Linear stage

Chilled Sample Stage

-17-" Rectenna

1 Gap

Thermal Source

Energy conversion only needs to view thermal source

Packaged devices for thermal test



1 Vacuum Radiometric Setup

Thermal Source

Water cooled sample stage



Generated Voltage across Load Resistance
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Power generation
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Impedance match

Peak power generated for load resistor matched to zero bias diode resistance.
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Next generation rectenna
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1 Comparison of 1st Gen devices to 2nd Gen
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Enhanced near-field radiative heat transfer
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Planar device
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1 Conclusions
■ Developed a large-area nanoantenna coupled tunnel diode rectifier
that resonantly converts infrared radiation into photocurrent.

■ Demonstrated power generation from a thermal source in a large-
area antenna coupled tunnel diode.

■ Developed a model based on photon-assisted tunnel
— Shows clear indication of sign change in current as a function of radiation
temperature.

— Qualitative agreement with simple uniform barrier model predicts IV vs
temperature characteristics.

■ Future:
— New devices using full design capability of CMOS shows large improvement

— Near-field enhanced power generation


