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Abstract—Wireless communication protocols are widely-used
in smart devices and systems. Manufacturers normally buy
and/or fabricate their communication chips from third-party
suppliers, which are then integrated into a complex hardware-
software stack with a variety of potential vulnerabilities. Di-
rect measurement of the output or power signals can prevent
unauthorized data transmission. This work proposes a compact
supervisory circuit to classify the operation of a Bluetooth (BT)
SoC at low frequencies by monitoring the radio frequency (RF)
output of the BT chip through an envelope detector. The idea
is that we can inexpensively fabricate envelope detector, power
supply current monitor, and classification algorithm on a low-
frequency integrated circuit in a trusted legacy technology. When
the supervisory circuit detects abnormal behavior, it shuts off
power from the BT chip. We extract simple yet descriptive
features from the envelope of the RF output signal. Then, we train
machine learning (ML) models to classify different BT operation
modes, such as separating BT advertising and transmit/receive
modes of the BT chip. Our results show very high classification
accuracy (— 100%).
Index Terms—Hardware Security, Supervisory Circuit, Blue-

tooth, Machine Learning, Security, RF Signals, Classifier.

I. INTRODUCTION

Due to the complexity and multi-functionality of smart
systems, most manufacturers outsource communication chips
from third-party suppliers. The integration between many
outsourced ICs has resulted in the need to add a hardware
security layer to ensure appropriate operation. For example, in
Apple's smartphones, there is a dedicated co-processor, Secure
Enclave, to handle all cryptographic operations and maintain
the integrity of data protection for the entire system [1].
BT, like any communication protocol, has vulnerabilities.

For instance, in 2017, Armis [2] identified a new BT attack
vector called BlueBorne (BB) that can take control of the target
device. BB attacks regular computers, smartphones, and IoT
devices. This security breach occurs without pairing to the
targeted device nor even while the BT IC is in discovery
mode. As the BT chip is responsible for establishing the
connection and controlling the flow of data, BB and other
security breaches could attack the BT IC without the consent
of the controller chip. Therefore, monitoring a BT chip at the
hardware level is necessary to verify its correct operation.
As shown in Fig. 1, one way to monitor the chip is to

consider it as a black box which consumes and transmits
power. Thus, abnormal behavior can be detected by learning
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Fig. 1. Diagram of the supervisory circuit's idea. In which, the power signals
during the normal operation are collected. Then, the ML model is used in
real-time to verify the normal operation.

the normal input/output (1/0) power signatures, for example.
A second way is to parameterize aspects of the BT connection
(e.g., profile type, the distance between paired devices, number
of connected devices) and compare the detected behavior to
the expected behavior based on the controller chip instructions.
Supervisory circuits are commonly used in detecting power
failures but are not common for security purposes [3]. Re-
cently, PFP Cybersecurity [4] has partnered with XILINX to
detect security breaches in XILINXs devices using artificial
intelligence. Their work is focused on self-monitoring, not
monitoring another IC, and is intended to monitor XILINX
devices only.

Background: A BT device can broadcast data to all nearby
devices, or it can establish a secure connection to particular
devices. Generic Access Profile modes and procedures are
responsible for authorization of a connection [5]. First, the
advertising process takes place in which the slave device is set
to discovery mode in order to be noticed by the master device.
During this process, in each specific advertising interval, the
slave re-transmits advertising packets. On the master side, the
device begins the general discovery procedure which scans for
slaves' advertising packets, then lists the available devices [5],
[6]. At the application layer, the master device chooses the
desired device to which to connect [6]. Once the connection
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is established, Generic Attribute Profile (GATT) describes the
transfer of the data through the devices in a handshaking
process. We can categorize the transmitting states into two
states: advertising state, before establishing the connection,
and transreceiving state, after the connection.
Proposed Supervisory Circuit: We are creating a super-

visory circuit to detect abnormal operation of a complex,
mixed-signal communication System-on-Chip (SoC). BT is the
communications standard of choice for this work. We could
use similar techniques to other communications protocols.
We design a supervisory circuit that can operate at low
frequency, low power, and inexpensive computationally. This
will facilitate our ability to fabricate the supervisory circuit in
an inexpensive circuit technology or integrate soft intellectual
property (IP) into a more advanced SoC. When the supervisory
circuit detects a security abnormality, the circuit can intervene
and shut down the BT IC.
The supervisory circuit design is split into several major

blocks, as shown in Fig. 2. First, the circuit that provides
and controls power is comprised of a controlled low-dropout
(LDO) voltage regulator. LDOs are widely used in portable
communications systems since they occupy a small area, have
low noise, and provide high transient performance. Embedded
in the LDO is a current sensor that monitors the output current
of the LDO. External to the supervisory circuit is an RF
coupler, which splits the transmitted RF signal into the main
path and a monitored path. The monitored path passes through
the envelope detector, which lowers the frequency of the RF
signal in order to be able to sample it at frequencies much
lower than 4.8 GHz, the Nyquist rate of the 2.4 GHz BT signal.
As such, the supervisory circuit can be entirely implemented
using low-speed technology. The outputs of the current sensor
and the envelope detector are digitized using analog-to-digital
converters (ADCs). Finally, digital signal processing (DSP)
circuits, or soft IP, will be used to extract the features from
all relevant signals. At run-time, the system extracts the
necessary features to feed into the Machine Learning (ML)
models to determine what operation is running on the BT
IC. In future work, We will compare monitored behavior
to accepted behavior via the Control Bus shown in Fig. 2.
More details about the supervisory circuit implementation is
available here [7].

Related Work: Outsourcing ICs fabrication to third party
manufacturers increases the possibility of an untrusted mod-
ification to the circuitry, i.e., a hardware Trojan, during pro-
duction. According to Hasegawa's classification [8], a non-
destructive, non-invasive hardware Trojan detection techniques
can be classified as either run-time or test-time. Both of these
approaches are based on comparing test IC parameters with a
golden IC model i.e., the parameters obtained from a known
Trojan-free IC. Test-time approaches use logic testing and/or
side-channel parameters to inspect the IC before integrating
them into a system. Even when combining logic testing and
side-channel analysis [9], test-time approaches are still limited,
since attacks may only be triggered after deployment. Run-
time hardware Trojan detection methods aim to monitor the
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Fig. 2. Block diagram of communication SoC monitoring system comprised
of a digital signal processing (DSP) block, analog-to-digital converters (ADCs)
and the two proposed supervisory circuits: an output-current-monitoring low-
dropout voltage regulator (LDO) and an envelope detector. A classification
algorithm is implemented in the DSP block.

chip continuously through the addition of monitoring circuitry.
Bao et al. [10] use variations in temperature sensors readings
to detect hardware Trojans. Hasan et al. [11] use formal veri-
fication as a framework to develop run-time hardware Trojan
detection units for digital circuits. In this paper, we monitor
a communication IC through RF and power input signals
during run-time. Unlike the aforementioned hardware Trojan
detection techniques, we are not focused only on the security
of digital circuits. We propose additional hardware that can
verify correct IC operation to detect abnormal operation that
might be a hardware or a software attack in a mixed-signal
communication SoC.

On-chip classification of IC behavior requires relatively
simple computations. Iwase et al. [12] use a discrete Fourier
transform feature of the voltage signal. Other classifiers select
features from multiple domains [13], [14] after transforming
the signal using both wavelet and/or Fourier analysis. Also,
researchers used statistical features from both time and fre-
quency domains [15]. Still, other approaches extract large
numbers of features from signals, then apply computationally
intensive dimensionality reduction techniques [16], [17]. In
this paper, we are concerned with the computational com-
plexity of the selected features and classification algorithms.
Since frequency transformations require high computational
overhead, the selected features are exclusively extracted from
the time domain. We experimented with frequency domain
features and we verified that they provide more computational
complexity without any performance advantages. In addition,
we selected novel features that are computationally smart,
cheap, while achieving high accuracy 100%).

II. METHODOLOGY

Prior to fabricating the supervisory circuit, we prototype
our supervisory circuit using off-the-shelf components and



Fig. 3. The preliminary laboratory experimental setup showing the laptop,
BT evaluation board, RF splitter, envelope detection evaluation board, and
oscilloscope.

an oscilloscope in order to collect a data set sufficient for
training and testing the classification algorithm. We placed
small-valued series resistors on the power supply pins to the
CYW20706 [18] BT SoC in order to monitor the supply
current to each of the SoC's voltage domains In addition, the
RF output of the BT IC passes through an RF splitter. One
side of the splitter goes to an antenna for pairing with other
BT devices. The other side of the splitter is attached to an AN-
2264 LMH2121 envelope detection evaluation board [19]. This
particular envelope detector has an input bandwidth from 0.1
to 3 GHz which covers the BT band. The envelope detection
stage lowers the frequency of the signal, so the Nyquist rate
is decreased. This experimental setup is depicted in Fig. 3.
A laptop controls the BT board via USB. The oscilloscope
samples and saves the envelope-detected RF stream and input
power signals.

The BT board is programmed to act as 2 popular profiles:
hands-free and headset, in addition to customized profiles
using GATT services. While each profile is running, different
events occur, such as dialing, hangup, and streaming music.
The events are controlled using a graphical user interface, as
shown in Fig. 4, which utilizes a serial port through USB
to send commands to the BT evaluation board. The network
topology of two devices is defined. Moreover, we collect
the RF streams of each profile in both the advertising and
transmitting/receiving (transceiving) states. First, the hands-
free profile RF output signal is recorded while executing
multiple events, such as dialing, answering, and hang up.
Second, the headset profile RF output signal is captured during
various events, such as streaming music, rewind, scrub, and
volume control. Lastly, a customized profile is used to simulate
a simple embedded system which can be connected through
BT communication. Basically, it notifies the BT evaluation
board of a sensor reading to a paired device, which can control
the number of blinks of a light-emitting diode.

The oscilloscope captures the RF envelope-detected signal
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Fig. 4. The graphical user interface of the BT board while controlling the
hand-free profile.

with a sampling frequency of 50 kHz. A processing window
of 640 ms (corresponding to 32,000 samples) with one sample
advance is selected to collect as many transmitting events as
possible with a minimal computational load. Three features
are extracted from each window to train the ML models. The
first feature extracted is the maximum signal value in the
given window, since the maximum signal value is expected
to vary from one transmitting state to the next. Changes in the
maximum value are related to the different profiles. As we are
interested in the pattern of the BT transmission, the other two
features are extracted after thresholding the envelope-detected
stream into two binary levels. In other words, the signal is 1-
bit quantized. Therefore, after quantization, value 1 means the
BT is transmitting, whereas value 0 indicates no transmission.
The remaining two features extracted are the area under the
curve and the number pulses, both extracted from the 1-bit
quantized signal in a given window. The area under the curve
is correlated to the total transmission duration in a certain
window, whereas the number of pulses represents the density
of the transmission events in the window.
The data set is constructed of 189,522 unique windows, or,

in the language of ML, observations. MATLAB is used to
train and test the models [20]. The data set is fed to different
ML algorithms, including decision tree, K-Nearest Neighbor
(KNN), support vector machine (SVM), and quadratic discrim-
inant analysis, for the purpose of comparing their accuracy and
prediction speed. For all classifiers, 25% holdout validation
is used for testing the models. The prediction speeds are
measured on the same computer machine using MATLAB.

III. RESULTS AND DISCUSSION

Table I summarizes the performance of various ML algo-
rithms which are applied to classify the transmission state
(State Classifier). We present the prediction speed after train-
ing and the classification accuracy of different ML algorithms.
As can be seen, for the State Classifier, logistic regression is
the fastest algorithm in prediction but is less accurate than
the other six tested algorithms. Among the remaining six
algorithms, the decision tree is the most accurate model with
99.99% accuracy and also the second fastest predictor. The
KNN algorithm has a high accuracy with an average 99.7%,



TABLE I
COMPARING DIFFERENT ML MODELS IN TERMS OF ACCURACY IN
PERCENTAGE (%) AND PREDICTION SPEED (PS), MEASURED IN

OBSERVATIONS PER SECOND.

Accuracy Prediction Speed (obs/sec)
Dicsion Tree 99.99% 890,000
KNN (K=1) 99.98% 250,000

Quadratic Discriminant 67.30% 640,000
Logistic Regression 90.10% 1,500,000

Cosine KNN 98.90% 380
Cubic KNN 99.98% 20,000

Weighted KNN 99.98% 78,000
Linear SVM 71.80% 2,700

Quadratic SVM 35.20% 46,000
Qubic SVM 30.60% 1,300,000

Gaussian SVM 99.80% 13,000

higher than the different flavors of KNN (1-NN, cosine, cubic,
weighted). Of those, KNN with k=1 (1-NN) and weighted
KNN have the highest prediction accuracy out of the varieties
of KNN and 1-NN is the fastest in prediction.

Looking simultaneously for both high accuracy and pre-
diction speed, 1-NN and decision tree are the top candidates
for the State Classifier. Nevertheless, the decision tree is
3.5 x faster than 1-NN in prediction. Also, regarding the
hardware implementation of the models, the 1-NN model
needs more storage than that of the decision tree, because
1-NN keeps a copy of the training data in order to calculate
the Euclidean distance between the prediction point and the
nearest training set observation. The point is then classified
according to the class of the closest observation. In contrast,
the implementation of the decision tree algorithms is based on
branching, with a maximum number of branches per feature
of 100 in this case. Therefore, the computational load of the
decision tree is much less than that of 1-NN.
As the classifier is applied at the last point of the BT

physical layer, that is, the RF output, the proposed design of
the supervisory circuit can detect many security breaches or
abnormalities in the data transfer behavior. For example, the
BB attack takes control of BT enabled devices without any
authorization from the user. The State Classifier can detect the
connection to the attacking device, and report it to the targeted
device. Thus, the targeted device can discover that there is a
connection at the physical layer without the authentication of
the software layers. Then, the targeted device can shut down
the BT chip through the controlled LDO. This initial proof-
of-concept demonstrates high classification accuracy for BT
states. We note, however, that the current classifier is limited
in the number of profiles.

Iv. CONCLUSION

In this paper, we demonstrate that we can monitor and verify
the correct BT chip operation, thus preventing unauthorized
connections and/or transmission of data. We use low-frequency
measurements of the RF output signal from a BT SoC.
The state classifier enables the devices that use BT to keep

track of what happens at the physical layer. Consequently, the
supervisory circuit can monitor the activity of the BT chip

by comparing the classifier's output with the software layer
commands to the BT chip. We select three simple features
from the chip's RF output envelop. These features are enough
to achieve a very high classification accuracy 100%).
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