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Project Summary
Timeline:

Start date: October 1, 2018 (early stage)

Planned end date: September 30, 2021

Key Milestones 
Project Milestone (M8): Demonstrate operation of rotating IR
camera
Go/No-Go Decision Point 1 (M12): Demonstrate agreement
between computational model and experimental results
Go/No-Go Decision Point 2 (M24): Demonstrate at least 1
RHX design that exceeds thermal performance of baseline
RHX design.
Project Milestone (M36): Demonstrate TRL 4 RHX-based
thermoelectric refrigerator having a COP within 10% of a VCC
refrigerator.

Budget:
Total Project $ to Date:
• DOE: $450k (FY19)
• Cost Share: N/A (FFRDC)

Total Project $:
• DOE: $1,350k
• Cost Share: N/A (FFRDC)

Key Partners: TBD

Year 1 Complete experimental setup and design hybrid DNS-
LES CFD framework

Year 2 Develop high-performance RHX designs and publish a
design methodology for RHX technology
Develop fundamental understanding of heat transfer
in rotating heat exchangers and identify hierarchy of
mechanisms

Year 3 Demonstrate a high-COP RHX-based thermoelectric
refrigerator, developed to TRL 4

Project Outcome:
• Conduct a combined experimental (rotating IR

thermography boundary layer imaging) and
computational (hybrid LES-DNS simulation with
relevant boundary layer physics) campaign to uncover
RHX heat transfer enhancement mechanisms.

• Based on this understanding, develop optimized RHX
designs and systematic framework for applying RHX
technology to practical applications.

• Use optimized RHX design to demonstrate high-COP,
cost-effective thermoelectric refrigeration, which
eliminates high-GWP refrigerants without any
efficiency compromise. Develop TRL 4 prototype with
the intent to stimulate further R&D in the area of non-
vapor compression heat pump technology.
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Team

Wayne Staats, PhD (PI), Sandia National Laboratories
• Heat transfer measurements, thermoelectric system

design
• Background in thermal-fluids engineering, active

convection enhancement, RHX design

Rainer Dahms, PhD, Sandia National Laboratories
• Computational modeling
• Background in combustion modeling, multi-scale

simulation, advanced multiphysics CFD

Jeff Koplow, PhD, Sandia National Laboratories
• Thermoelectric system design, electrical engineering
• Background in RHX development (inventor), power

electronics, tech transfer and commercialization,
multidisciplinary innovation
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Challenge

• Heat exchangers (HXs) affect the performance and energy use of many building
technologies

• Non-vapor compression (non-VCC) refrigeration is not currently competitive with
VCC refrigeration due to HX performance limitations

• Improved HX performance contributes directly to BTO goals

— Develop cost-effective technologies to reducing a building's energy use per square foot
by 45% by 2030

— Road to "Low": high-GWP refrigerant phasedown (HX performance gains can enable non-
VCC refrigeration technology)
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Challenge

• Rotating heat exchangers (RHXs) represent a new lever to attack the HX
performance optimization problem

• RHXs offer significant performance improvements for some applications,
especially when cooling a solid (e.g. a semiconductor)

— Up to 10x volume reduction, low power consumption, intrinsic fouling resistance, quiet
operation

— Building technology applications: non-VCC refrigeration, solid-state lighting cooling,
appliance thermal management, and rooftop solar PV inverter thermal management
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Challenge
• In past work we developed an empirical understanding of RHX Leading edge (destabilized

performance boundary layer)

• 0011°'`We seek to develop a mechanistic understanding of RHX
performance and apply it to non-VCC refrigeration

• Three hypothesized enhancement mechanisms

Centrifugal force boundary layer thinning

Direct wall-relative-velocity increase

- Coriolis force boundary layer destabilization

• With a mechanistic understanding, we can develop rationally
optimized RHX designs and a systematic framework to apply
RHX technology to practical building technology applications
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Approach
• Combine experimental and computational methods

— Rotating infrared (IR) thermography to directly probe local
boundary layer behavior and wall heat transfer

— Hybrid Large Eddy Simulation (LES) / Direct Numerical
Simulation (DNS) computational study

— Develop fundamental understanding of physical heat
transfer enhancement mechanism

• Develop new RHX designs and design methodology

• Apply optimized RHX design to non-VCC refrigeration

— Develop TRL 4 prototype refrigeration system
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leading channel

_ air flow— 
gimp.
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Understanding enhancement mechanism can reveal
effective performance improvements 

[6]

Example: thin printed circuit
board with heater traces

LS
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...viewed with compact IR
camera
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...yields IR image (temperature)
4 reveals local heat transfer

coefficient
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I m pa ct

• Understanding the physical mechanisms of RHX heat transfer
will reveal the full potential of the technology

• The design tools developed in this project will make RHX
technology more accessible to thermal engineers

— Contributes to BTO ET's goal of reducing building energy
use per square foot by 45% by 2030

• High-performance RHX designs enable high-COP, cost-effective
thermoelectric residential refrigerators, accelerating
phasedown of high-GWP refrigerant use

Thermoelectric refrigerator system model
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Thermoelectric refrigerator COP is very
sensitive to HX performance!

RHX-based thermoelectric
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Progress

• Project started in October 2018

• Hybrid LES-DNS flow simulation framework demonstrated

— Transient simulation of full RHX completed to establish high-fidelity boundary conditions
for single channel

— Boundary layer refinement parameter selected

— Initial high-fidelity results demonstrated and confirmed to have qualitatively consistent
flow behavior

• Design of experimental apparatus completed, fabrication currently underway

— Conducted literature review of thermographic measurement techniques

— Selected infrared camera and data acquisition system

— Rotational platform under construction
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Stakeholder Engagement

• Project is in early stage (started in October 2018)

• Key stakeholders include: refrigerator OEMs, thermoelectric
device OEMs, research personnel in the field of advanced
heat sink design, and DOE personnel responsible for
strategic road-mapping and budget allocation on programs
related to thermal management, heat pumps, and building
efficiency.

• Plan to engage key stakeholders:

— Year 1: engage Tony Bouza (conduct base research)

— Year 2 and 3: focus on path forward to engage appropriate OEMs,
participate in conferences to share results (e.g. ASME !Therm)

— Ongoing: assess market and literature to ensure relevancy

— Future (TBD): develop commercialization strategy
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Remaining Project Work
Blue indicates currently in progress

Descr .

1

2

3

Task 1: Design experimental apparatus and

characterize local heat transfer (M1-M18)

• Design experimental apparatus to accurately determine the local heat transfer
characteristics under the range of conditions encountered in RHXs

Project Milestone (M8): Demonstrate operation of rotating IR camera system and make measurements on a test object.

Task 2: Conduct targeted computational study

of fundamental RHX heat transfer (M1-M18)

• Test the boundary conditions and setup, assess results by comparison to
experiments

• Test the dynamic subgrid-scale model to ensure smooth transition between LES
and DNS

• Perform simulation runs with increasing fidelity and validate against experiments
• Analyze and interpret results for novel insights into physical mechanisms

Go/No-Go Decision Point 1 (M12): Demonstrate that results of computational model agree with average flow and heat transfer

measurements of baseline RHX designs under various operating conditions.

Task 3: Develop high-performance RHX

designs and design methodology (M15-M24)

• Develop high-performance RHX designs that exceed the heat transfer performance
of the baseline design and publish a design methodology for RHX technology

• Develop fundamental understanding of heat transfer in rotating heat exchangers
and identify hierarchy of mechanisms, resulting in a correlation for the local heat
transfer coefficient

Go/No-Go Decision Point 2 (M24): Demonstrate at least 1 RHX design that exceeds thermal performance of baseline RHX design.

Task 4: Design and build proof-of-concept

RHX-based thermoelectric refrigerator (M22-

M36),

• Demonstrate a high-COP RHX-based thermoelectric refrigerator, developed to TRL
4 by the end of year 3 and having a COP comparable to VCC refrigerators.

Project Milestone (M36): Demonstrate TRL 4 RHX-based thermoelectric refrigerator having a COP within 10% of a vapor

compression refrigerator.
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Thank You

Sandia National Laboratories

Wayne Staats, PhD

wstaats@sandia.gov
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Project Budget

Project Budget: Federal funds: $1350k

$1350k
Variances:

Cost to Date: $260k
Additional Funding:

Cost-Share: N/A (FFRDC) Total:

Bud et Histor

10/1/2019- FY 2019 
FY 2020 (planned) 

FY 2021 - 9/30/2021
(current) (planned)

DOE Cost-share DOE Cost-share DOE Cost-share
$450k N/A $450k N/A $450k N/A
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Project Plan and Schedule
Blue indicates currently in progress

Description

1

2

3

Task 1: Design experimental apparatus and

characterize local heat transfer (M1-M18)

• Design experimental apparatus to accurately determine the local heat transfer
characteristics under the range of conditions encountered in RHXs

Project Milestone (M8): Demonstrate operation of rotating IR camera system and make measurements on a test object.

Task 2: Conduct targeted computational study

of fundamental RHX heat transfer (M1-M18)

• Test the boundary conditions and setup, assess results by comparison to
experiments

• Test the dynamic subgrid-scale model to ensure smooth transition between LES
and DNS

• Perform simulation runs with increasing fidelity and validate against experiments
• Analyze and interpret results for novel insights into physical mechanisms

Go/No-Go Decision Point 1 (M12): Demonstrate that results of computational model agree with average flow and heat transfer

measurements of baseline RHX designs under various operating conditions.

Task 3: Develop high-performance RHX

designs and design methodology (M15-M24)

• Develop high-performance RHX designs that exceed the heat transfer performance
of the baseline design and publish a design methodology for RHX technology

• Develop fundamental understanding of heat transfer in rotating heat exchangers
and identify hierarchy of mechanisms, resulting in a correlation for the local heat
transfer coefficient

Go/No-Go Decision Point 2 (M24): Demonstrate at least 1 RHX design that exceeds thermal performance of baseline RHX design.

Task 4: Design and build proof-of-concept

RHX-based thermoelectric refrigerator (M22-

M36),

• Demonstrate a high-COP RHX-based thermoelectric refrigerator, developed to TRL
4 by the end of year 3 and having a COP comparable to VCC refrigerators.

Project Milestone (M36): Demonstrate TRL 4 RHX-based thermoelectric refrigerator having a COP within 10% of a vapor

compression refrigerator.
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