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2 1 Outline

- Motivation

- 14 MeV neutron irradiation facilities

- Effect of 14 MeV neutron flux on damage factor

- Four hypothesis for damage factor difference

1. Localized annealing during high flux shots

2. Gamma induced annealing
3. Down scattered neutrons during low flux irradiations
4. electron-hole pair annealing I

- Conclusions ‘



3 1 Motivation

ACRR 14 MeV

- Pulsed vs steady state |
irradiations (effect of flux)

Z [um]

- Understanding of
neutron energy spectrum

- Understanding rapid
annealing after neutron burst

- Neutron single |
event effects I

- Damage effects are different for 1 MeV vs 14 MeV

Do we get the same damage with 14 MeV neutron steady state runs and short pulse irradiations?




4 1 Irradiation Facilities = 14MeV neutron

IBL-14 MeV n/SNL OMEGA/LLE NIF/LLNL
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- Target: Use of deuterium beam on tritium target - Target: Hoppe-type glass DT(10)Si02, Type B -D'I-['-arget: HSC plastic polar direct drive
target

- Pulse length: 1 week-long steady irradiation - Pulse length: Multiple 125 ps-long shots - Pulse length: 300 ps-long single shot I

- Flux ~ 5x108 n/cm2/s - Flux ~ 7x102° n/cm?/s - Flux ~ 2x1022 n/cm?/s

16 orders of magnitude in flux per shot (for roughly the same fluence)

Explored the effect of 16 orders of magnitude difference in neutron flux using 3 different facilities




g ‘ Effect of 14 MeV neutron flux on defect spectrum
Deep Level Transient Spectroscopy (DLTS)
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- DLTS peak amplitude « to the # of defects
- Same type of defects produced by all facilities 60% difference in damage factor I
- High flux facilities resulted in less defects |

Low neutron flux irradiations produced a 60% larger damage factor than high flux irradiations




6 I Four hypothesis for damage factor difference

1. Localized heating

|

2. Gamma rays-induced annealing

3. Down scattered neutrons

4. Electron-hole pair annealing



7 1 |. Rise of temperature during high flux irradiations -
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Temperature rise during ion irradiations show a decrease of the deep peak and an increase of the VO/VP,

peak = not observed in high flux neutron irradiations




g8 I 2. Defect annealing by Gamma rays

Hypothesis: Omega and NIF produce a gamma environment that could introduce annealing
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9 1 3. Down scattered neutrons

Hypothesis: Down scattered neutrons are not being counted in low flux irradiations

- IBL 14 MeV neutron fluence is determined via associated particle detection and activation foils
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MCNP shows there is a low energy neutron component in the neutron energy spectra at IBL - 14 MeV n beamline




10 I 3.What is the effect of the down scattered neutrons on the damage?

Down scatter neutrons
contribute an extra 16% damage

Down scattered have a small
effect
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Down scattered neutrons do not account for the 60% difference in damage factor




Are the short-pulse environments in NIF/OMEGA producing a large concentration of e-h pairs
which are annealing out defects?

14 MeV neutrons deposit up to >80% of the energy into ionization.
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Electron concentration = 2.8e16 e/cm?3

11 | 4. Electron-hole pair concentration in NIF and OMEGA E.:
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Electron concentration = 2e16 e/cm3

Multiple 125 ps-long shots

NIF

|

300 ps-long

single shot

Electron concentration = 6.6e16 e/cm?3

- Carrier concentration during short
pulses at Omega and NIF is very high
relative to doping level

- Localized annealing due to high e-h pair
concentration in very period of time

- DLTS signature does not change during I

current Injection annealing

High carrier concentration during high flux irradiations might result in defect annealing




12 1 Conclusions
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- Low neutron flux irradiations at IBL produce
more damage than high flux shots at OMEGA and NIF
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- High carrier concentration during high flux shots uence (n/cm’)

anneal out neutron damage as it is being created I
- Under investigation

- Designhed experiments to probe this ‘



