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2 Introduction

• The objective is to use molecular simulation to investigate aqueous ion diffusion and
adsorption to mineral surfaces in more complex systems more representative of
compact soils and rocks.

• Gibbsite is used as a model mineral because it has properties similar to a clay mineral
but does not include the additional complexity of an interlayer.

• Molecular simulations are performed for:

o Water and ion adsorption to the basal (001) and edge (100) gibbsite surfaces

o Water and ion adsorption to a gibbsite nanoparticle

o Water adsorption to gibbsite nanoparticle aggregates that are created through de-
watering and compaction



3 Adsorption on Gibbsite basal (00 l) and edge (l 001 surfaces
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4 Cation Adsorption to Gibbsite Surfaces
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5 Gibbsite nanoparticle construction
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6 Comparison of Adsorption on Gibbsite Nanoparticle vs. Surfaces
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7 Cation Adsorption at Nanoparticle Corners
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Other Studies Showing Importance of Edge and Corner Site
8 Importance to Adsorption/Reactivity

Rustad and Felmy (2005) The influence of
edge sites on the development of surface
charge on goethite nanoparticles: A
molecular dynamics investigation. GCA,
69, 1405-1411

Large-scale molecular simulation of
proton accumulations were carried out
on
• (110) and (021) slabs immersed in

aqueous solution
• a series of model goethite

nanoparticles of dimension 2 to 8 nm
with systematically varying
acicularity and (110)/(021) surface
areas.

• Particulate systems show a preferential
accumulation of protons at acute (110)-
(110) intersections. More H20
accessible.

• Charge accumulates preferentially in
this region because excess proton
charge at an asperity is more
effectively solvated than at a flat
interface.



9 Surface Complexation Models
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• Two-site isotherm has a slope of 1.0 at log (Cd2+)(mol/L)<-6.5
corresponding to the filling of the high-energy site 1 (maximum
occupancy 0.005 mol/mol Fe).

• For -5.5 < log (Cd2+aq) (mol/L) < -3.0, corresponds to filling of the
low-energy site 2 (maximum occupancy 0.2 mol/mol of Fe).

• The very low abundance of the "high energy" sites has been
attributed to the role of lattice defects, crystal edges, dislocations or
surface sites on the smallest crystallographic faces. (Robertson Et
Leckie, 1998, Misra, 1968; Catts and Langmuir, 1986; Spadini et al.,
1994).



Gibbsite aggregation
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Ho, T.A., Greathouse, J.A., Wang, Y. and Criscenti, L.J. (2017) Atomistic
structure of mineral nano-aggregates from simulated compaction and
dewatering. Scientific Reports 7:15286



11 Stacking of nanoparticles
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1 2 Pore properties

Effect of dewatering on PSD
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13 Water structure: I D atomic density profiles
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Ho, T.A., Greathouse, J.A., Wang, Y. and Criscenti, L.J. (2017) Atomistic
structure of mineral nano-aggregates from simulated compaction and
dewatering. Scientific Reports 7:15286
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14 What's next?

Flow through Columns?

Breakthrough Curves?



15  Conclusions

The percent cation adsorption as inner-sphere complexes depends on the gibbsite
surface.

➢ For all cations, surface coverages are higher on the basal surface than the edge
surface.

➢ For all cations, surface coverages are highest for the nanoparticle, due to the
significant number of inner-sphere cations found at nanoparticle corners.

➢ For the nanoparticle aggregates, slow dewatering creates more compact
aggregates that fast dewatering.

➢ For the aggregates, the amount of water present strongly affects the particle-
particle interactions and the aggregate structure.



16 1

2.5.104 2.0 10-3

cci-• 2.0.10-3
cE 1.5104

-... -..
o
E 1.5.10 E
E e 1.0.10-3
scli 0

ctl 1.010-3 7/7/
-0 Z

1.' i' 5.0. 10--4t- ...,
--- 5.0.10 - t-

0.0.10
200 400

c (mM)

0.0 10

c (mM)
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Lammers et al. (2017) Molecular dynamics simulations of Cs+
1 7 adsorption on illite

Cation exchange is thermodynamically ideal on basal surfaces

Exchange on edge surfaces and within interlayers show complex,
thermodynamically non-ideal behavior. Basal surfaces are weakly Cs-selective, while
edges and interlayers have much higher affinity for Cs.

Development of fully-flexible clay mineral nanoparticles with stable edge surfaces.
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Fig. 3. Map of Cs density averaged over the entire 50 ns simulation with /43 - 0.5. Cesium primarily binds to ditrigonal cavities on the basal surfaces and to "cleaved cavities"
at edge surface H-sites.



18 Surface Complexation Models

Some SCMs can fit bulk data with an average surface site and then invoke
the use of a second, low density, high energy site to better fit bulk adsorption data
- hypothesizing that this second generic surface site represented defect,
corner, and edge sites (Davis and Kent, 1990).

• Adsorption Isotherms: Typically, the isotherms have a slope of 1 at extremely low
metal concentrations and a slope of <1 at higher concentrations that give rise to
maximum surface coverages well below the surface coverage of one monolayer.

Many investigators, propose that a slope of <1 = adsorption to more than one type
of surface site.
Venema et al. (Venema,1996) modeled Cd2+ adsorption onto goethite using only
2 site types; Each found on a different crystal face.
Recent molecular static studies on the surface site types of an ideal goethite
Suggest that the difference in surface site types of an idea goethite crystal did not
Lead to large differences in surface protonation constants (50;
Rustad et al., GCA, 1996)).
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Conclusions
• The percent cation adsorption as inner-sphere complexes depends on the gibbsite

surface.

• For all cations, surface coverages are higher on the basal surface than the edge
surface.

• For the nanoparticles, cation surface coverages are enhanced, due to the significant
number of inner-sphere cations found at nanoparticle corners.

• For the nanoparticle aggregates, slow dewatering creates more compact aggregates
that fast dewatering.

• For the aggregates, the amount of water present strongly affects the particle-particle
interactions and the aggregate structure
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