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Subsurface Sensing with Chemical Waves

Central premise: Chemical kinetics systems Cross-Well Tracer
with multiple stationary states coupled to
transport can support chemical waves with
the ability to provide information on spatial
networks through which they propagate

Chemical waves are self-sustaining
disturbances in chemical or other variables
that propagate over distance with or
without attenuation (Ortoleva, 1992)
arising from nonlinear coupling of
chemical reaction and transport under far- Push-Pull Tracer
from equilibrium conditions (Nicolis and
Prigogine, 1977).

Use of chemical waves for subsurface
sensing are termed here “nonlinear
tracers” to discern from usual linear
tracers, such as isotopes, conservative
tracers such as Cl or Br, temperature, etc.




Belousov-Zhabotinsky Reaction

Canonical oscillatory reaction is the oft-
studied Belousov-Zhabotinsky (BZ)
reaction

Organic substrate (malonic acid)
oxidized by bromate in acidic solution
with metal (Fe) catalyst

Complex kinetic steps. A simple model is
the Oregonator (Field et al., 1972) in
which the autocatalytic step is made
clear (X is HBrO,, Y is Br-, and Fe3* or
other catalyst; A and P are “pool”
concentrations):

t=35s t=40s

Belousov-Zhabotinsky
reaction in stirred beaker
and petri dish, showing
oscillations in blue and red
regions corresponding to Fe
oxidation state (photo from
Michael C. Rogers and
Stephen Morris, University of
Toronto,
https://en.wikipedia.org/wi
ki/Belousov%E2%80%93Zhabo

tinsky_reaction

A+Y->X+P
X +Y > 2P o
A+X>2X+ Z* .
2X >A+P o
Z->fY . —

| —

— P(aq)

*autocatalytic step
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Numerical solution of Oregonator reaction scheme using PFLOTRAN
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Unconventional Computing Examples

“liquid chemical computing”:
chemical waves interacting with
a geometrical medium can be
used as chemical switches
(Rossler, 1974); logic gates
(Hjelmfelt and Ross, 1995);
chemical neural networks and
Turing machines (Hjelmfelt et
al., 1991); and chemical clocks
(Winfree, 1982).

Generally, chemical kinetics
systems with multiple stationary
states coupled to transport can
support chemical waves with
the ability to provide
information on spatial networks
through which they propagate Tunable BZ-like dynamics propagate top to bottom thru
(Hjelmfelt et al., 1993; street network according to size (from Adamatsky et al., |

Steinbeck et al., 1996). 2018) ‘




s | CFD Modeling: ‘“Skeleton Model” of CHD-Br-Fe System

« Reaction network from
Szalai et al., 2002; 2003
Br + HBrO, + H* -> 2HOBr  (R2) « Uses 1,4-Cyclohexandione
Br- + BrO; + 2H* -> HBrO, + 2HOBr  (R3) (CHD) as organic subs.trai.:e
(CO, generated remains in
2HBrO, -> BrO; + HOBr + H+ (R4) solution)
HBrO, + BrO3- + H* = 2Br0O,* + H,0 (R5) « Similar autocatalytic step
as original BZ
H,Q + 2BrO,* -> 2HBrO, + Q (R6a)
2+ * + = 3+
Fe’ + BrO,* + H* = Fe3* + HBrO, |(Réb) Bicstahility Oxidized
BrCHD -> f H,Q + Br- + H* (R9) state

H,Q + BrO;” + H* -> HBrO, + Q + H,O  (R13)
2 Fe3* + BrCHD -> H,Q + Br + 2 Fe?* +..... (R16)

+
~N

V)
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71 Microfluidics Experiments

» Two glass microfluid cells are used to
examine excitability of BZ media to
advection in porous media

» Use CHD as organic substrate to avoid
bubbles in microfluidic cells

* |Influent fed from well mixed BZ media

b)

—————
nnnnnnnnnn
110,9,85859,0,0;0;0,1

Schematics of micromodel columns in a
60 mm long by 10 mm tall domain.
Black and green circles represent the
full regular packing of columns. Green
represents columns to be removed for
fracture modeling.

-,

Chemical waves in CH
Br-Fe system in beaker

60 mm

v




s I Microfluidics Results

« Volumetric flow uses
Optos Eldex HPLC pump

* Flow rate ranges from 1
to 0.1 microliters/s

* Flow rate is stepped
down and stepped up

» Variety of chemical
wave propagation
observed




9 | Microfluidics Results (cont’d)

Examples with
“fracture

Wave generation
and propagation
vary from previous
example

Chemical wave
tracers could be
used to
characterize porous
media

Sensitivity to
advection velocity




10 I Summary of Experimental Observations

» Spatio-temporal chemical waves will advance from spatial perturbations, but
will not initiate in an initially spatially homogeneous concentration field

» Wave trains of advancing zones of alternating redox state are initiated and
sustained, with period/wavelength sensitive to the properties of the porous
media

* Wave trains are sensitive to flow conditions. In the absence of flow, waves
advance at rates faster than diffusion rates through the cells. In low flow
conditions, waves can remain spatially stagnant or even migrate against the
advective gradient

» At higher rates of flow, chemical wave trains can be swept along at rates
commensurate with the advective velocity, and the instability leading the
spatio-temporal oscillatory behavior is dampened

At sufficiently high advective flow rates, any spatial variability is wiped out,
but the pore solution can still exhibit chemical clock behavior in a manner
uninfluenced by the porous texture
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CHD-Br-Fe System: Numerical Examples
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Model of Salazai et al.,
(2002) with complex
kinetics involving ~49 steps

Solution of a simpler 19-
step “skeleton model” in
batch mode shown at left,
a good approximation of
the Salazai et al. (2002)
experimental behavior

~20 minute induction time
required, after which the
system develops complex
oscillations




12 | Computational Fluid Dynamics Modeling

» Coupled Navier-Stokes equations
with species continuity equations
(keeping inertial terms) and
assuming incompressible flow

» Shallow channel approximation for
microfluidic cell thickness

* Nonlinearly coupled reaction
network with (pseudo) mass action
Kinetics 2.

* Triangular mesh:

=

inlet

—

du pu
pa+p(u-V)u—V-[—pl+K]—d—§

aCi

E+V-]i+u-Vci =Ri

pV-u=0 K=pu(Vu+vu)")

Ji = —D;V¢;

T R
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—

Steady-state laminar flow field in modelled microfluidic cell (m/s)




CFD Animations of Full CHD-Br-Fe: Advective gradient
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Applications — Contaminant Detection

Reduce CHD-Br-Fe reaction network to Oregonator-like dynamics

Solve system in 1D moving reference frame
Perturb kinetics and examine phase space behavior
Quite sensitive to environmental variations in pH, Cl-, organic substrate
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s | Applications: Other Chemical Systems

NalO; -> Na* + 1057, k,=1.67e-5
105 -> | + P1, k, =1.67e-4
105" + 21" -> 31" + P2, k;=41.7

|- -> 0.51,, ky=1.67e-2

J ..... .... .. .. .. .. .. .. .. .. ...C.. .. .. .. ...’6’1“ ]
o 808608608 ® 8 800 8 808
(MO O R0 ) 0 0 0 0:0x0x
010201020280
OO0
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— e
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Model system from:

M.M.C. Ferreira, W.C. Ferreira Jr., A.C.S.
Lino, and M.E.G. Porto, J. Chem.
Education, vol. 76, p. 861, 1999;

H.S. Fogler and M.N. Gurmen,
http://www.engin.umich.edu/~cre/web_m
od/oscil/module.htm




Applications: Interaction with Fractures
16 | and Leakage in Engineered Barriers
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17 | Applications: Liquid Logic Gates in Fractured Media
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logic gate design for an AND logic
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Left column: velocity (m/s). Middle
column: iodate concentration
(mol/m?3). Right column: line
integral of outflow concentration
for the left pq outlet (orange-solid
line) and right pq outlet (blue-
dashed line).

The image and table gives the
geometry and labels of
inlets/outlets and the truth table.
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Further Musings on Applications

A variety of autocatalytic chemical systems are known (e.g. Noyes, 1990;
Orba’n et al., 2015) that could help design analogous systems that could
serve as nonlinear chemical tracers in the subsurface:

Bray-Liebhafsky reaction involving disproportioning of H,0, by iodate
Briggs-Rauscher reaction with iodate, hydrogen peroxide, and carboxylic acids
Oscillatory dehydration of formic acid involving carbon monoxide

Destruction of ozone by CHCs

We suggest that appropriately engineered chemical waves could serve
other purposes in subsurface sensing:

Information or power delivery to or from embedded electronic sensors
Swelling clays as chemo-mechanical pumps
Interacting with microbial populations to track migrating contaminant plumes.

Inasmuch as the kinetics of chemical waves can be fine-tuned, chemical waves can
alternatively overcome temporal and spatial limitations of other subsurface sensing
mechanisms, increasing resolutions below that of seismic imaging, or overcoming
attenuation of electronic sensors.
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Conclusions

We suggest that simple autocatalytic
reaction networks could serve as
“chemical wave” or “nonlinear”
tracers for subsurface sensing

A combination of microfluidic
experimentation and CFD modeling of
nonlinear tracing demonstrates
sensitivity to flow path geometries
and advective gradients, displaying
excitability and a variety of wave
behavior

Nonlinear tracers could prove useful
for leakage and contaminant
detection at sub-seismic resolutions,
expanding the role of chemical
tracing
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