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2 The scope of this presentation
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3 The phase diagram of the rare-earth metal tritides
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4 Stoichiometric deficiency

Peter Vajda studied the cc+P : p
phase boundary and found that the
boundary approached 2.0 as the
purity of the metal increased.

(REM)H2.0+x+6 where

x = super-stoichiometry amount

8 = stoichiometric deficiency

2

1.95

1.9

1.85

1.8

1.75

i

Stoichiometric Deficiency

Y Tb Lu

3N 4N 3N 4N 3N 4N

2-6 1.81.97-1.991.92-1.941.96-2.00 1.821.97-1.99

1.9 1.85

Solid
Solution
Solubility
Limit 0.2 0.1 0.35 0.25 0.25 0.03

P. Vajda, Hydrogen in rare earth metals, including RH2+x phases, in: K. A.
Gschneider (Ed.), Handbook on the Physics and Chemistry of Rare Earths,
vol. 20, North-Holl., Amsterdam, 1995, p. 207

(REM)H2.8

iii L
3N 4N 3N 4N 3N

Y Tb Lu

• d+B:B Phase Boundary • d Stoichiometric Deficiency

4N



5 Site stability during gaseous loading

Data taken at 450 C and pure D2 gas in erbium metal

Structure monitored via neutron diffraction

Octahedral sites begin to be occupied at 200 Torr, higher the pressure
more occupancy.

Removing D2 gas removes the octahedral site occupancy
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What happens when tritium decays into helium-3: Data from
6 E rT2

Immediately after tritium decays 2 things
happen:

1) Helium begins to be emitted from the
metal tritide — we term this "Early
Release"

2) Helium bubbles begin to form which
store the helium gas

Later a point is reached called "Critical
Release" or "Catastrophic Release"
where the Release Fraction = 1
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7 Helium release from the rare-earth metal tritides

0 .0 01

1E-4

1E-4
0 0

Ytterbium Tritide (YbT2) Helium Release Neodymium Tritide (NdT2) Helium Release Gadolinium Tritide (DyT2) Helium Release

•

Dysprosium Tritide (DyT2) Helium Release

j • Dynamic Release Fractionl • SL 176 ca. • • SL383 • SL266 i• ofek% m

• SL 177
• SL 178
o SL 180
• S L 181

•
o

or ,,

V44.•
1

•
irA
• mi.

V. 
p•

IS rmio
1, fi
•

•
WM

• o
o

airc, •
•

•

ill% ••
mm

• SL261
• SL250

A el

AA

•
•

••
•

•• 0

Mr
610 •
• •

0.
•I, •
•

• •
•

• 0

v•

••

•
•

■
•

0

•
•

•

A

• ib •ItIOM
* • •
•

M.

•■1
A • •

•

•
•

•

•
• • • %I..

110

NOMA

AO

•

0 AAA

•

Ak

•

I

•

• •

•

A

V

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 0

Time (He:M)

Praesodymium Tritide (PrT2) Helium Release

0 1 0 2 0 3 0 4 0 5

Time (He M)

0 6 0 7

Lutetium (LuT2) Helium Release

0.00 0.05 0.10 0.15

Time (He:M)

0.20 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Time (He:M)

Yttrium Tritide (YT2) Helium Release Holmium Tritide (HoT2) Helium Release

0.1

0.01

0.001

1E-4

• SI_ 172
v SL 171
• SL 169
• SL 170
• SL 173

• • Lu Tube 17
• Lu Tube 12
A Lu Tube 2
• Lu SL 382 Tube220

-4,••••
•
•
• A

, esAaAlsomi
'm,•
•

•
•

• SL 146
• SL 143
• SL 145
• SL 144
* SL 142
o SL 141

• Le

-h';

 

.
•

• Tube 420
• HoT2 Tube 419
A HoT2 Tube 8

A

..

•
• atii_W
4MgA mirem.di

• o

•
.

• -i,
.•.
•
*AMco,

•

• •

ir :
••

•
• •
•

A AA:

•

% ••

•
•

. •

q.1 I•
po

• •

mipAar y
,,
• •• il•

•
•
•

k '• .,`
..04: '

viii
•

IP il

•

• •A
•

M•

. •A •
■•
.

• ., t. .i-•
i. :to •

•

AA.. •

A■
• •

i

■•
•

•M

•

•

•

• •

•

& • • •
A

•
•

01 02 0.3 04

Time (He:M)

0 5 0 6 0 0 01 0.2 0.3

Time (He:M)

0.4 0.5 00 01 0.2 0.3 04

Time (He:M)

0 5 0 6 0 0 0 1 0 2 0 3 0 4

Time (He:M)

0 5

0.1

0.01

0.001

lE 4
0 6



.

8 Where does the early release portion of helium come from?
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9  Can helium migrate in metal tritides? An example from ErT2
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Helium born in octahedral sites will
stay in octahedral sites bound to
empty tetrahedral site by 0.49 eV with
a 1.31 eV dissociation energy.

Helium will move freely between two
octahedral sites unoccupied by
hydrogen, barrier 0.49eV.
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10 Helium bubble shapes

Helium Bubble Shape Ratios
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11 Helium bubble spatial distribution

Bubbles observed evenly distributed throughout film.

Grain boundary decoration only when GB aligns along (111) plane

Bubbles observed around Er203 pieces.

Oxide Grain boundary with bubbles Grain boundary without bubbles



12 Helium bubble growth and interactions l
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ErT2 samples tracked and studied with TE

Length increases with time up to He:Er — 0.15.

Width doesn't change until He:Er —0.15.

Size distribution log-normal throughout life.
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13 Helium bubble growth and interactions II

Bubbles begin to link later in life.

Length stops growing, width begins to increase.

Becomes very difficult to even define what is a bubble.



14 Helium bubble transition point
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1 5 Evidence for the bubble growth model
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16 Helium bubble pressures

Pressure in bubble
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17 Summary, Conclusions, and Future Work

•Lots of great physics and still more to learn

•What is the helium bubble nucleation mechanism?

• Why do they start where they do?

• Oxide inclusions?

• A defect?

• Self-trapping?

•Verify some of these predictions on other materials, study as in-depth as ErT2

•Develop a GUT (Grand Unified Theory) of Helium bubbles in metals



18 Back-Up Slides



19 Thermodynamics of the metal hydrides
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20 Dissociation pressures of the rare-earth hydrides

Dissociation Pressure peaks at
Ho

Er still very high and makes for
a very stable beta phase di-
hydride.
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Computed site stabilities and hydrogen movement in rare-earth
21 metals

Results are for ErH2 but should be
similar for all rare earth metal hydrides

Dominant mechanism determined by
stoichiometry

Movement of hydrogen will more likely
result from nonstoichiometry
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22 The role of the native oxide in inhibiting hydrogen desorption
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Temperature Programmed Desorption with
a ramp rate of 1 C/second
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main tetrahedral desorption peak from 640C
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23  The role of the native oxide in inhibiting hydrogen uptake

Before gaseous loading need to "activate" the
surface of the sample.

Activation breaks down the oxide layer, leaving
a mostly metallic surface layer

Activation occurs very quickly, 5-10 minutes.
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24 Summarv of activation D roc esses
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25 Isotopic enrichment of solid phases

300
Zero Point Energy (ZPE) is the
difference between the lowest possible

,-1energy that a quantum mechanical >
system may have, and the classical g 200

minimum energy of the system. al>
f"

ZPE leads to differences in isotopic C
40 '100

enrichment of metals. .e

1 Pd H is preferred over D r,i

Er D is preferred over H

,

269

234

-191

HI 4
35 rneV

D
4

202

142

H

60 meV

4

H I Ti Mn4.5H23 Pd H0.65

"Interaction of Hydrogen Isotopes with Transition Metals
and Intermetallic Compounds" by B. M. Andreev et al.



26 Hydrogen site stabilities
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Two important questions about site occupancy:

1) Is the Octahedral site occupied at 2.0?
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27 Hydrogen site stabilities

Two important questions

YES! The heavier
atoms prefer
tetrahedral sites,
lighter prefer

2) In a mixed isotope system is there a site preference? octahedral sites
1.0

about site occupancy:

1) Is the Octahedral site occupied at 2.0?
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