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21 The scope of this presentation
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3

The phase diagram of the rare-earth metal tritides
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Stoichiometric deficiency

Peter Vajda studied the o+ : 3
phase boundary and found that the
boundary approached 2.0 as the
purity of the metal increased.

(REM)H, 4,15 where
X = super-stoichiometry amount

& = stoichiometric deficiency
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5 1 Site stability during gaseous loading

Data taken at 450 C and pure D, gas in erbium metal
Structure monitored via neutron diffraction

Octahedral sites begin to be occupied at 200 Torr, higher the pressure
more occupancy.

Removing D, gas removes the octahedral site occupancy.
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Rodriguez et al., “In-Situ observation of ErD2 formation during D2 loading via
neutron diffraction” in Powder Diffraction 26 (2), June 2011 p.144




What happens when tritium decays into helium-3: Data from

ErT,

Immediately after trittum decays 2 things
happen:

1) Helium begins to be emitted from the
metal tritide — we term this “Early
Release”

2) Helium bubbles begin to form which
store the heltum gas

Later a point is reached called “Critical
Release” or “Catastrophic Release”
where the Release Fraction = 1

RF.
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Average Helium Release

Average Helium Release
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Helium release from the rare-earth metal tritides
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s | Where does the early release portion of helium come from!?
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Can helium migrate in metal tritides? An example from ErT,
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10 I Helium bubble shapes

Helium Bubble Shape Ratios

v (GPa-nm) |n (GPa) |b (nm) Ratio
Pr 0.69 25| 0.390182| 0.070736
Nd 0.685 26.7| 0.386363| 0.066402
Sm 0.431 29.8| 0.379999| 0.038061
Gd 0.664 31.8| 0.374979| 0.055685
Tb 0.669 33.8| 0.370948| 0.053358
Dy 0.648 34.8| 0.367766| 0.050632
Ho 0.65 35.6| 0.365221| 0.049993
Er 0.637 36.9| 0.362251| 0.047654
Lu 0.94 40| 0.355887| 0.066032
v (GPa-nm) Surface Energy
u (GPa) shear modulus
b (nm) Burger's vector
, Surface Energy 1%
Ratio of : =
Strain Energy ub

> 0.1 Sphere
< 0.1 Platelet

D. Cowgill “Helium nano-bubble evolution in aging metal
tritides” in Fusion Science and Technology 48, 539
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11 I Helium bubble spatial distribution

Bubbles observed evenly distributed throughout film.
Grain boundary decoration only when GB aligns along (111) plane

Bubbles observed around Er,O5 pieces.

He:Er [~0:07-0.079]

Oxide Grain boundary with bubbles ~ Grain boundary without bubbles




12

Number of bubbles

Number of bubbles

Helium bubble growth and interactions |

Width doesn’t change until He:Er ~0.15.

3

° Tight distribution early

o Larger distribution later
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ErT, samples tracked and studied with TEM

Length increases with time up to He:Er ~ 0.15.

Size distribution log-normal throughout life.
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131 Helium bubble growth and interactions Il

Bubbles begin to link later in life.

Length stops growing, width begins to increase.

Becomes very difficult to even define what is a bubble.
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Helium bubble transition point
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15 I Evidence for the bubble growth model

Days after hydriding
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16 I Helium bubble pressures

Pressure in bubble
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> () = atomic volume (volume of the tritide per metal
atom)

° vy, =volume required by 3-He in the high pressure
bubbles

cQ=Q,[1+ CT(A”/QO)T]
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17 1 Summary, Conclusions, and Future Work

*Lots of great physics and still more to learn

*What is the helium bubble nucleation mechanism?
* Why do they start where they do?

* Oxide inclusions?
* A defect?
* Self-trapping?

*Verify some of these predictions on other materials, study as in-depth as ErT,

*Develop a GUT (Grand Unified Theory) of Helium bubbles in metals
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Thermodynamics of the metal hydrides
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20 I Dissociation pressures of the rare-earth hydrides
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Computed site stabilities and hydrogen movement in rare-earth
21 I metals

Results are for ErH, but should be
similar for all rare earth metal hydrides ¢

Dominant mechanism determined by ‘ ¢
stoichiometry ®

Movement of hydrogen will more likely
result from nonstoichiometry
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103, 123708 (2008)




The role of the native oxide in inhibiting hydrogen desorption
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23 1 The role of the native oxide in inhibiting hydrogen uptake

Before gaseous loading need to “activate” the
surface of the sample.

Activation breaks down the oxide layer, leaving
a mostly metallic surface layer

Activation occurs very quickly, 5-10 minutes.
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24 1 Summary of activation processes
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Brumbach et al. “Activation of erbium films for
hydrogen storage” in JAP 109, 114911 (2011)




25 | Isotopic enrichment of solid phases
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“Interaction of Hydrogen Isotopes with Transition Metals
and Intermetallic Compounds” by B. M. Andreev et al.




Yes!
Maybe?
Depends on purity of sample |

26 I Hydrogen site stabilities

Two important questions about site occupancy: ° { I Ll
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27 I Hydrogen site stabilities

YES! The heavier
Two important questions about site occupancy: atoms prefer
tetrahedral sites,
lighter prefer

2) In a mixed isotope system is there a site preference? octahedral sites
T ' l ' 1.0 .

1) Is the Octahedral site occupied at 2.0?
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Udovic et al., “Hydrogen and deuterium site separation in fcc-based mixed-isotope rare-earth hydrides”
in Physical Review B, Vol. 61, No. 10 March 2000 pp. 6611-6616




