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2 I Outline of Presentation

•Introduction to DECOVALEX19 Task C: GREET (Groundwater
Recovery Experiment in Tunnel).

Modeling of Hydrology at the Mizunami Underground Research
Laboratory, Japan.

• Effect of boundary condition due to domain size

. Upscaling Discrete Fracture Model to a Continuum Model



idrology and Geochemical Experiments at theizunami Underground Research Laboratory

• URL located at Tono area (Central Japan)

• Study is part of DECOVALEX2019 Task C (JAEA experiments)

GREET(Groundwater REcovery Experiment in 
Tunnel) Preliminary test (drift closure and water-
filling) to estimate the recovery process in granitic
rock
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I Study Area: Tunnel and an Observation
4 1 Borehole

• Tunnel sections: Inclined Drift and Closure Test Drift

• Monitoring Sections in Observation Borehole 12M133



5 1 Tunnel Excavation Progress Data

• Progress of excavation of inclined Drift and Closure Test
Drift tunnel sections
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61 Fracture Model Development
• Measured fractured data from tunnel walls and Borehole 12M133

• FRACMAN used in model development (Kalinina et al., DFNE 2018)
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71 Upscaled Permeability and Porosity

• Upscaled permeability and porosity fields for a single realization
• Matrix rock represented by permeability of 10-19 m2 and porosity

of 0.001
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8 1 Simulation Model Development

• Simulation was conducted for tunnel excavation, water inflow,
pressure drawdown and chloride concentration changes.

• Modeling domain: 200 m x 300 m x 200 m.
• Regular mesh with grid block size: 2 m x 2 m x 2m.

• Mesh Size: 1,500,000 grid blocks.

• Fracture model with two fracture sets; 10 DFN realizations used.
• Permeability and porosity upscaled to continuum grid.
• Initial Condition: hydrostatic pressure and chloride conc. gradient
• Boundary Conditions: specified pressure and chloride conc.
• Pressure and chloride prediction at observation points.
• Prediction of inflow rate as a result of tunnel excavation.
• DAKOTA, optimization code and PFLOTRAN massively parallel

numerical code used for simulation.



91 Flow Simulation Approach

Progressively removing material.

1 m at a time for a total of 103 m.

DAKOTA-PFLOTRAN simulation codes used.

DAKOTA: Optimization Code.

PFLOTRAN massively parallel numerical code.

° Excavated tunnel at atmospheric pressure
boundary condition.

Simulations run for 10 fracture realizations.
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1.1 Predicted Pressure Distribution Results

• Pressure and Chloride distributions along tunnel axis, after 173
days simulation time (total excavation time)
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11 I Predicted Pressure History Results
• Predicted pressure history at monitoring points in Observation

Borehole 12M133

• Pressure drawdown due to flow into tunnel as a result of
excavation.
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Predicted Inflow of Water into Tunnel for
12 Ten Fracture Realizations
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131 Analysis of Effect of Boundary Condition 
_I

I
• For the base case specified pressure and chloride concentration

boundary conditions were applied at the top, bottom and sides.
• To study the effect of boundary condition, a larger domain was

used with no boundary conditions applied.

• Inflow prediction analysis was done for the larger domain size and

compared results with those of the base case.

• Permeability and porosity for Realization 2 upscaled to large grid.

• Initial Condition: hydrostatic pressure and chloride conc. gradient.

• The same modeling procedure as for the base case were applied.

i



1 Analysis of Effect of Boundary Condition,14 Contd.
• Base Case domain

• Domain size: 200 m x 300 m x 200 m in the x, y and z
• Mesh size: 1,5000,000 grid blocks.

• Larger domain
• Domain size: 1386 m x 1486 m x 806 m in the x, y and z
• Mesh size: 2,352,987 grid blocks.

Base Case Domain (Not to Scale) Larger Domain (Not to Scale)



15 Distribution of Pressure for Large Domain

Liquid Pressure [Pa]
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161 into TunnelComparison of Predicted Inflow of Water I
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1 Effect of Grid Block Size in Upscaling DFN17 to Continuum Grid

1
I

• For the DECOVALEX Task C modeling DFN was upscaled to
continuum in FracMan using the Oda method.

• The Oda method is a geometric based upscaling method.
• Modeling analysis conducted to study effect of grid block size. .
• Different domain sizes and grid block sizes considered.

• A fracture realization was used for the analysis.
• Effective permeability and tracer breakthrough estimated.
• PFLOTRAN used for flow and transport simulations. I
• Results are shown for domain size 200 m x 300 m x 200 m.
• Pressure and tracer concentration gradient applied.
• Flow and transport from south to north (300 m length).



181 Effective Permeability vs Grid Block Size
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Tracer Transport Breakthrough Curves for
19 Different Grid Block Sizes
• Simulations showed grid block size limits of 0.5 m to 25 m

• Direct DFN simulations to be used to optimize grid block size
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.1 Conclusions

0 Flow modeling was conducted to predict inflow of water during
tunnel excavation and pressure drawdown at the Mizunami
Underground Research Laboratory.

0 Results show that determination of optimum domain size is
important to limit boundary effects.

• Oda upscaling method is grid block size dependent
• Output shows a power law relationship between permeability and grid

block size

• There is a need to compare upscaled results to DFN simulation results to

optimize grid size
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