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2 | Excess Bioethanol Production

U.S. ethanol production (2010-2017)
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Bioethanol production in U.S.: steady increase andis ~ Blend wall: conventional engine and refueling facility
outpacing the demand of gasoline cannot handle gas with more than 10% ethanol

Ways to utilize the excess ethanol is needed!




31 Upgrading Ethanol to Valuable Chemicals

Butadiene Production (Guerbet Reaction)
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Both targets requite C—C bonds formation by Aldol condensation




41 Metal-Organic Frameworks (MOFs) for Catalysis

* Consist of metal nodes and multi-topic linker
* Porous, crystalline materials that exhibited
potential applications, including catalysis
* Essentially hetrogeneous catalysts w/ high
density of accessible active sites
* Highly tunable:
-Intrinsically by selection of metal and ligands
-Extrinsically by ligands exchange/
incorporation or metallation on the nodes
* Predictable from computational modelling




s 1 Zr-based MOFs as Catalysts for Aldol Reactions

Bronsted Acid is necessary for catalyzing aldol condensation.
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Catalyst TON TOF (h?)
Ui0-66(Hf) 9.8 9.7
Hf-MOF-808 9.3 5.2
Zr-MOF-808 9.3 4.8
Ui0-66(zr) 7.7 1.7
Ui0-66-NH(Hf) 75 1.5
HfCla 4.4 1.3
Ui0-67(Hf) 2.5 0.6
An amino-modified Zr-terephthalate metal-organic framework as an Hf-based metal-organic frameworks as acid—base catalysts for the
acid-base catalyst for cross-aldol condensation transformation of biomass-derived furanic compounds into chemicals
Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Rojas-Buzo, S.; Garcia-Garcia, P.; Corma, A.

Chemical Communications 2011, 47 (5), 1521-1523. Green Chemistry 2018, 20 (13), 3081-3091.




6 I Controlling Density of Catalytic Sites in Zr-MOFs
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7‘ Characterization of MOFs Materials

All MOFs are synthesized following literature procedures
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8 I Model Reaction for Self-Aldol Reaction
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Product Analysis of Propanal Model Reaction
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10

Catalytic Coupling of Acetaldehyde with MOF-808 (Zr)

MOF-808 (Zr)
120°C, overnight
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11 I GC-MS analysis

PO E immediate aldol product
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Many products from secondary reaction are identified.
Second aldol, H-transfer reaction, oxidation, esterification
—Better control of secondary reaction is needed




2-Ethylhexyl Aldehyde Synthesis
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131 Flow Reaction with Ethanol/Acetaldehyde (3:1 mol ratio)
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14 I Stability Test on the Post Catalysis MOF-808 (Hf)

- PXRD did not show loss in crystallinity
- Sample lost all N, accessible porosity

Washed with CDCl;, NMR taken:
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Likely polymer formation in the pores




15 I Summary

* Zr(Hf)-MOFs are active for aldol condensation, key C—C coupling reaction for
upgrading acetaldehyde.

* The activity of the MOF catalysts for aldol reaction can be tuned by the density
of acidic sites on the metal nodes.

* In addition to aldol condensation, hydrogen transfer reactions, esterification, etc.
can be carried out by Zr-MOFs, which can be further utilized to upgrade platform
molecules from bio-refinery.

* Control of reaction pathway in the MOF's needs to be investigated.
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