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2 Excess Bioethanol Production

U.S. ethanol production (2010-2017)
thousand barrels per day
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Bioethanol production in U.S.: steady increase and is Blend wall: conventional engine and refueling facility
outpacing the demand of gasoline cannot handle gas with more than 10% ethanol

Ways to utilize the excess ethanol is needed!



3 Upgrading Ethanol to Valuable Chemicals

Butadiene Production (Guerbet Reaction)
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Both targets require C C bonds formation by Aldol condensation



4 Metal-Organic Frameworlcs (MOFs) for Catalysis

Ui0-66

• Consist of metal nodes and multi-topic linker

• Porous, crystalline materials that exhibited

potential applications, including catalysis

• Essentially hetrogeneous catalysts w/ high

density of accessible active sites

• Highly tunable:

-Intrinsically by selection of metal and ligands

-Extrinsically by ligands exchange/

incorporation or metallation on the nodes

• Predictable from computational modelling



5 Zr-based MOFs as Catalysts for Aldol Reactions

Bronsted Acid is necessary for catalyzing aldol condensation.

p3-oxo/ hydroxyl

HA

1
+ H20

An amino-modified Zr-terephthalate metal—organic framework as an
acid—base catalyst for cross-aldol condensation
Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D.
Chemical Communications 2011, 47 (5), 1521-1523.
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Catalyst TON TOF (h-1)

Ui0-66(Hf) 9.8 9.7

Hf-MOF-808 9.3 5.2

Zr-MOF-808 9.3 4.8

Ui0-66(Zr) 7.7 1.7

Ui0-66-NH2(Hf) 7.5 1.5

HfC14 4.4 1.3

Ui0-67(Hf) 2.5 0.6

Hf-based metal—organic frameworks as acid—base catalysts for the
transformation of biomass-derived furanic compounds into chemicals
Rojas-Buzo, S.; Garcia-Garcia, P.; Corma, A.
Green Chemistry 2018, 20 (13), 3081-3091.



6 Controlling Density of Catalytic Sites in Zr-MOFs
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7 Characterization of MOFs Materials
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All MOFs are synthesized following literature procedures
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8 Model Reaction for Self-Aldol Reaction
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9 Product Analysis of Propanal Model Reaction
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10 Catalytic Coupling of Acetaldehyde with MOF-808 (Zr)

MOF-808 (Zr)
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11 GC-MS analysis OH
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Many products from secondary reaction are identified.
Second aldol, H-transfer reaction, oxidation, esterification
—Better control of secondary reaction is needed



12 2-Ethylhexyl Aldehyde Synthesis
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13 Flow Reaction with Ethanol/Acetaldehyde (3:1 mol ratio)
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14 Stability Test on the Post Catalysis MOF-808 (Hf)

- PXRD did not show loss in crystallinity
- Sample lost all N2 accessible porosity

Washed with CDCI3, NMR taken:
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Likely polymer formation in the pores



15 Summary

• Zr(Hf)-MOFs are active for aldol condensation, key C C coupling reaction for
upgrading acetaldehyde.

The activity of the MOF catalysts for aldol reaction can be tuned by the density
of acidic sites on the metal nodes.

• In addition to aldol condensation, hydrogen transfer reactions, esterification, etc.
can be carried out by Zr-MOFs, which can be further utilized to upgrade platform
molecules from bio-refinery.

• Control of reaction pathway in the MOFs needs to be investigated.
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