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Motivation — Solar Module Material and BOS Cost
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Wafer sawing loss (kerf loss) ~50% oM BB

e ~40% of flattop commercial roofs cannot support
the weight of conventional solar panels. OE workshap2D]

Heavy modules — Shipping & installation cost  Powelletal. Energy Environ Sci (2012)
Goodrich et al. Sol Energy Mat Sol Cell (2013)
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Approach: Thin Nanostructured C-Si Surface
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I s surface area increase: 1.7X
Mavrokefalos, S.E. Han, et al. Nano Lett (2012)
Branham et al. Adv Mater (2015)

Theo\ry * Thin C-Si wafer saves material and

1.0 installation cost
Experiment ) .
- * Drawback: Loss of light absorption
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Fabrication Steps

Production of Interference Wet etching Surface
thin c-Si wafer lithography passivation

@\ Plane 111 Plane 111

Etching Planes
Plane 100

Focus of this work:
Large area wet etching
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Model Development — Feature Scale

Well-mixed zone

100 nm
: Etching planes

350 nm
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Momentum and Total Mass Balance
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Species Transport
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Mesh Motion — Pseudo-solid
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Boundary Conditions

nT=-np, C =C(t1=0) ¢

&\ Plane 111 Plane 111

Etching Planes
Plane 100
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Species BC Mass flux due to surface
J, =J, (Ci) reaction
Mesh BC
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= v=0 n— =etch rate(C,) movement
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Seidel, H., et al. Journal of the electrochemical society 137.11 (1990): n|v—m |[=— Z IIDIZ. ttv=0
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Results — Feature Scale

Water KOH Hydrogen SiO,(OH),

B " 0% KoH Soaton Etch rate ~ 14 um/hour » Etch of 100 plane completed at
o / 63.6 seconds
§ / Diffusion coefficient in liquid ~ 10° cm?/s

,//// - Diffusion time scale is 12.8 seconds

Negligible concentration boundary layer 2 Reaction is much slower than transport
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Model Development — Wafer Scale
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* No mesh equation — not resolving transport and surface reaction in each feature

* Feature shape is inferred from extent of area-averaged surface reaction
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Results — Wafer Scale
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Potential Further Enhancements

Symmetry Breaking
(110] — Rotated Rotated Rotated
Rotated rectangular triangular Rotatedcentered  oblique
Square lattice square lattice lattice lattice  rectangularlattice lattice e Decrease amount of Symmetry >

Enhanced light trapping

* Achieved with modifying interference
lithography step = modify mask and
its rotation.
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Aty Double Periodicity
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Hassan, S., et al. Photonics 4 (2017): 50-58.
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Approach to Achieve Second Periodicity

Apply a confinement mask during wet

etching step = scalable for manufacturing
scale

Slow down transport of limiting reactant:
KOH

Region with KOH depletion will have more
shallow etch depth




Model Development — Shell Balance

Species Transport

h%JrvH[(hVHCi)=VH[(hDVHCl.)+J

J =etch rate(o,C,)
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* Thin region — Flow and species transport are averaged in gap direction

* Enable calculation at different mask patterns rapidly
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Results — After 50 s of etching
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Etch depth is set by
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Comparison with Experiments - After 310 s of etching

SED 15.0kV WD10mmP.C.30 HV  x10,000 '1um

Sep 20, 2018
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Model Predlctlon of Etch Depth Evolution
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Conclusions

* Performed multi-scale studies of wet etching process:
* Infeature level — reaction dominated
* In wafer scale — reaction dominated
* In wafer scale with confinement — transport limited

* Enable control of etch depth gradient with confinement — balance transport
and etch reaction
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