
Towards Performance Portability in
Albany Land Ice: a robust and scalable
land ice solver using Trilinos and Kokkos

April 2nd, 2019

PRESENTED BY

Jerry Watkins and Irina Tezaur
-

DOE Performance, Portability and Productivity Meeting
Denver, Colorado

fi
Sandia
National
Laboratories

, kiikkey 1VeS44

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2019-3671C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 1 Motivation

Earth-system models (ESMs) need more computational power to achieve
higher resolutions.

High performance computing (HPC) architectures are becoming increasingly
more heterogeneous in a move towards exascale.

Climate simulation software must adapt to continuously changing HPC
architectures with different models for shared memory parallelism.

ProSPect project under SciDAC

eSciDAC,....,....".,
thauugh
ithWICCJ COMp114111

ProSPect = Probabilistic Sea Level Projections from Ice Sheet and Earth System Models

5 year SciDAC4 project (2017-2022).

Role: to develop and support a robust and scalable land ice solver based on
the First-Order (FO) Stokes equations Albany Land Ice

Requirements for Albany Land Ice (formerly FELIX):

• First-order Stokes model

• Unstructured meshes

• Scalable, fast and robust

• Verified and validated

• Portable to new architecture machines

• Advanced analysis capabilities: deterministic
inversion, model calibration, uncertainty
quantification, sensitivity analysis

As part of DOE E3SM Earth System Model, solver will provide
actionable predictions of 21st century sea-level change

(including uncertainty bounds).

SM

CE3Energy Exascale
Earth System Model

https: / /doe-prospect.github.io/

4 Albany — finite element codebase in C++
Albany is built primarily for Rapid Application Development (RAD)
from Trilinos Agile Components

Component Examples (package name)

Discretization Tools (lntrepid2)

Nonlinear solver (NOX)

Preconditioners (lfpack2)

Linear solver (Belos)

Field DAG (Phalanx)

Automatic Differentiation (Sacado)

Distributed Memory Linear Algebra (Tpetra)

Shared memory parallelism (Kokkos)

Additive Manufacturing

-iroe"''' Ilk-712ii.-

4406, 4 .<1.4

Analysis and
Quick Design

Many more...

Computational Mechanics

os there DynamicsA

•

Testing Implementation

af
'c2te (Tes'

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos

5 Kokkos Performance Portability

Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

Abstract data layouts and hardware features for
optimal performance on current and future
architectures

Allows researchers to focus on application
development instead of architecture specific
programming

With Kokkos, you write an algorithm once for multiple hardware architectures.
Template parameters are used to obtain hardware specific features.

https://github.com/kokkos/kokkos/

6 Albany Finite Element Assembly (FEA)

Albany Land Ice performance is split between
the linear solve (50%) and FEA (50%)

Piro manages the nonlinear solve

Tpetra manages distributed memory
linear algebra (MPI+X)

Phalanx manages shared memory
computations (X)

Gather fills element local solution

Interpolate solution/gradient to quad. Points

Evaluate residual/Jacobian

Scatter fills global residual/Jacobian

First step towards performance portability
is the FEA

Gather ill

Trilinos Packages

L Phalanx

FEA Overview

terpolate

Solution

100,.. Evaluate

Residual

• Scatter

Memory Model

Distributed
Memory (DM)

Jacobian

Shared
Memory (SM)

https://github.com/SNLComputation/Albany

7 Phalanx — directed acyclic graph (DAG)-based assembly

Scatter

Residual

41Interpolate
Solutio

Gather
Solution

DAG Example

Interpolate
Parameter

Basis
Functions

Gather
Coordinates

Gather
Parameter

Advantages:

Increased flexibility, extensibility, usability

Arbitrary data type support

Potential for task parallelism

Disadvantage:

Performance loss through fragmentation

Extension:

Performance gain through memoization

Haswell
16MPI

SMAssembly

DMAssembly

a

a

3.9x

by

Haswell KNL P100
16(MPI+2OMP) 68(MPI+4OMP) 1(MPI+GPU)

Single CPU socket or GPU

t'Improvements

a: Base
b: Memoization
 .1

DAG Example (memoization)

catter

Residual

Interpolate
Solution

Gather
Solution

Stored
Field

Stored
Field

8 1 Phalanx Evaluator templated Phalanx node

A Phalanx node (evaluator) is constructed
as a C++ class

Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

The evaluation type is used to
determine the data type (e.g. double,
Sacado data types)

Kokkos RangePolicy is used to
parallelize over cells over an ExeSpace
(e.g. Serial, OpenMP, CUDA)

lnline functors are used as kernels

MDField data layouts
Serial/OpenMP — LayoutRight (row-major)

CUDA — LayoutLeft (col-major)

Residual

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset)

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(,workset.numCells)

*this);

}

template<typename EvalT, typename Traits>

KOKKOS INLINE FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,)=

}

;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,

force(cell,qp,0)*wBF(cell,node,qp);

}

}

{

9 Sacado Automatic Differentiation (AD)

Sacado data types are used for derivative components (ND = number of components)

DFad (most flexible) — ND is set at run-time

SLFad (flexible/efficient) — maximum ND set at compile-time

SFad (most efficient) — ND set at compile-time

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

1-

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

103 104 105
Problem Size (Number of Cells)

serial-sfad

serial-slfad 74
1-. 1

serial-dfad
t>o
a.

1
cn

163 104 105

Problem Size (Number of Cells)

openmp-sfad

openmp-slfad 2 200 -
openmp-dfad 1=1

at
o>

1

cs.
100 -

c/9"

103 104
Problem Size (Number of Cells)

cuda70-sfad

cuda70-slfad

cuda70-dfad

10 1 Performance Study — Greenland Ice Sheet (GIS)

GIS4k-20k

GIS1k-7k

4km-20km 1.51 million

1 km-7km 14.4 million

Unstructured tetrahedral element meshes

Wall-clock time averaged over 100 global
assembly evaluations (residual + Jacobian)

Performance analysis focuses on finite element
assembly

Notation for performance results:

r(MPI + jX), X E fOMP, GPU}

r = # MPI ranks

j = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

11 Performance Study —Architectures

Architectures:

Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

Compilers: gcc/icpc (xIC, armclang++ WIP)

Models:

3 models: MPI-only, MPI+OpenMP, MPI+CUDA

MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

MPI+GPU: MPI ranks assigned a single core per GPU
CUDA UVM used for host to device communication

2.0

E
1.5 -

1.0 -
o

'71:d 0.5

0.0

Performance Results — Node Utilization
Node: Single dual-socket CPU or quad-GPU

SMAssembly

DMAssemblv

12.6x

Node Configuration

a: 32MPI
b: 32(MPI+20MP)
c: 68MPI
d: 68(MPI+40MP)
e: 16MPI
f : 4(MPI+GPU)

MIL

0
Cori Cori Ride

0.
Blake Mayer Waterman

(Haswell) (KNL) (P8,P100) (SKX) (TX2) (P9,V100)
Clusters Clusters

Speedup achieved across most execution spaces

Kokkos Serial vs. OpenMP or CUDA (Doesn't include refactoring improvements)

12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100

Very little improvement on Skylake

Tpetra Export poor on V100 (WIP within Tpetra and CUDA9 GPUDirect issue on POWER systems)

SMAssembly

DMAssembly

2.0x

Node Configuration

a: 48MPI
b: 48(MPI+20MP)
c: 56MPI
d: 56(MPI+40MP)
e: 40MPI
f : 4(MPI+GPU)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)

1

1 3 1 Performance Results — Strong Scalability
Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

O

10

I)((.(\H I)(i (.(‘H

Reasonable scaling across all devices without machine-specific optimization in Albany

Poor GPU scaling (Export WIP within Tpetra and CUDA9 GPUDirect issue)

Best case: Skylake at 32 devices (768 cores)

Single CPU/GPU shared memory profile
SKX: 24-core V100: 1 GPU

Other Other
Gather/Scatter

Gather/Scatter

28.5

Evaluation
52.8

28.9 Evaluation
Interpolatioli

Interpolatio

30.4

Residual/Jacobian Evaluation most expensive

Gather/Scatter becoming increasingly important...

Other: some auxiliary routines are still expensive on the GPU (''10%)

1 5 Summary

Progress towards performance portability across a variety of HPC
architectures using a single code base by utilizing Trilinos/Kokkos

Multicore and manycore processors (Haswell, Skylake, KNL, TX2)

NVIDIA GPUs (P100, V100) I

We will be able to utilize next generation HPC architectures for
probabilistic sea-level predictions using Albany Land Ice

Targets: Cori (Haswell, KNL), Summit (POWER9+V100), Aurora

Performance can be improved on all architectures I

The open-source Albany multiphysics finite element code is
available here:

https://github.com/SNLComputation/Albany

1 6 Future Work

Improve performance portability of boundary conditions

More detailed profiling: vtune, nvprof, other tools?

Code optimizations for finite element assembly:
More work on hierarchical parallelism (Intrepid2, KokkosKernels)

More vectorization on CPUs

Better node utilization (e.g. multiple CUDA instances on GPUs)

Explicit data management to minimize memory transfers

Performance portability for solvers is an ongoing research topic
within Trilinos

Test next generation preconditioners (Multithreaded Gauss-Seidel, FastILU)

17 Funding/Acknowledgements

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded
by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

,,
Scientific Discovery
through
Advanced Computing

- I "A: u h . . .w km • k
FASTMATH

11
Office of Science
U.S. Department of Energy

Sandia
National
laboratories

Computing resources provided by the National Energy Research Scientific
Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

4 i(DAK
RIDGE
National Laboratory

18 Performance Portability a response to heterogeneity

Generic Definition: For an application, a reasonable level of performance is achieved
across a wide variety of computing architectures with the same source code.

Let's be more specific:

Performance quantified by application execution time while strong/weak scaling.

Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

M PI: distributed memory parallelism — Tpetra

X: shared memory parallelism — Kokkos
Examples: OpenMP, CUDA

Minimize data movement (efficient programming)

Increase arithmetic intensity (improve compute to memory transfer ratio)

Saturate memory bandwidth (expose more parallelism)

WIP: Hierarchical Parallelism
Hierarchical parallelism is used to expose more parallelism when strong scaling

Kokkos TeamPolicy, TeamThreadRange is
used to parallelize over cells and nodes

Kokkos scratch space is used to store
node/quadrature values in shared memory

-2x speedup for small problem sizes on GPU
(need padding for large problem sizes)

Slowdown for all problem sizes on CPU
(need different layout)

E 2.0 —

1.5 —
.5D
O

ts 1.0 —
o
a.
0

"C
.5

8

102 103 104 105
Problem Size (Number of Cells)

io"

CUDA70

Residual
Jacobian

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::TeamPolicy<ExeSpace>(workset.numCells,Kokkos::AUT0()),

*this);

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const Member& teamMember) const{

const Index cell = teamMember.league_rank();

// Allocate shared memory

ScratchView qpVals(teamMember.team_shmem(), numQPs, fadSize);

ScratchView nodevals(teamMember.team_shmem(), numNodes, fadSize);

// Zero nodeVals

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

nodeVals(node) = 0; });

// Fill Ugrad00

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numQPs), [&] (const Index& qp) {

qpVals(qp) = Ugrad(cell,qp,0,0); });

// Calc Ugrad00 contribution

for (Index qp=0; qp < numQPs; ++qp) {

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node)

nodeVals(node) += qpVals(qp) * wGradBF(cell,node,qp,0); }); 1

// Copy to Residual0

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

Residual(cell,node,0) = nodeVals(node); });

1 Performance Results Weak Scalability
Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=Thunderx2; P100,V100=GPU

4 x 10° 4 x 10°

,--, 3 x 10°- —1.— HSW '
3 x 10° -

,,
—.- - KNL

En-

c-, 2 x 10°-
---- P100•_. • r-I

-4

v-- r--

Q Q

Tj

0 C

1 0 " -
7)4

10 O 7
_I, 1

Aral"

x 10-1 -
10°

• goossi

•

Devices

101

Reasonable scaling across all devices without machine-specific optimization in Albany

Poor GPU scaling (Export WIP within Tpetra)

Best case: Skylake at 10 devices (280 cores)

21 1 Appendix: Single GPU Full profile

KokkosProfileOverviewV100 ProfileOverviewV100

non-Kokkos

Gather/Scatter

/

Other

11111111

28.5

Interpolatio

ir,Lu:11

-1°1114
31.6 Evnlililti()11

30.4

22 1 Appendix: Single GPU Kokkos and non-Kokkos

Gather/Scatter

KokkosProfileV100
Othcr

Interpola

29.7

Evaluation

nonKokkosProfileV100

CellInterp

DOFInterp

GatherCoor

LoadSta

BC

