This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia
National
Laboratories

SAND2019- 3671C

Towards Performance Portability in
Albany Land Ice: a robust and scalable
land ice solver using Tr|||nos and Kokkos

_;’?

; "Cr“":}

_—m‘im

April 274, 2019

Jerry Watkins and Irina Tezaur

DOE Performance, Portability and Productivity Meeting Sandia National Laboratores s a

multimission laboratory managed and
operated by National Technology and

D C ﬂ V C 1' 5 C O 1 O r a, d O Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International

SAND Inc. for the U.S. Department of Energy’s

National Nuclear Security Administration
under contract DE-NA0003525.

, | Motivation

* Earth-system models (ESMs) need more computational power to achieve
higher resolutions.

* High performance computing (HPC) architectures are becoming increasingly
more heterogeneous in a move towards exascale.

* Climate simulation software must adapt to continuously changing HPC
architectures with different models for shared memory parallelism.

; ‘ ProSPect — project under SciDAC @)

SciDA ProSPect = Probabilistic Sea Level Projections from Ice Sheet and Earth System Models CE}SM
o 5 year SciDAC4 project (2017-2022). Pt

Advanced Computing Earth System Model

Role: to develop and support a robust and scalable land ice solver based on
the First-Order (FO) Stokes equations — Albany Land Ice

Requirements for Albany Land Ice (formerly FELIX):

* First-order Stokes model X

e Unstructured meshes X

* Scalable, fast and robust %
* Verified and validated i
* Portable to new architecture machines =

* Advanced analysis capabilities: deterministic
inversion, model calibration, uncertainty v
guantification, sensitivity analysis

As part of DOE E3SM Earth System Model, solver will provide $~ | }
actionable predictions of 215t century sea-level change % €
: . . T s

(including uncertainty bounds). g8

https://doe-prospect.github.io/

1 L e OB "

+ | Albany — finite element codebase in C++

Albany is built primarily for Rapid Application Development (RAD)

from Trilinos Agile Components

Component Examples (package name)

Discretization Tools (Intrepid?2)
Nonlinear solver (NOX)
Preconditioners (/fpack?2)
Linear solver (Belos)

Field DAG (Phalanx)

Automatic Differentiation (Sacado)

Additive Manufacturing

D

Analysis and
Quick Design

Distributed Memory Linear Algebra (Tpetra)

Shared memory parallelism (Kokkos)

Many more...

Prototype

Computational Mechanics

Testing

A 4

Implementation

;s | Kokkos — Performance Portability

* Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

* Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

* Abstract data layouts and hardware features for
optimal performance on current and future
architectures

* Allows researchers to focus on application
development instead of architecture specific
programming

With Kokkos, you write an algorithm once for multiple hardware architectures.
Template parameters are used to obtain hardware specific features.

https://github.com/kokkos/kokkos/

. | Albany Finite Element Assembly (FEA) @
Albany Land Ice performance is split between Trilinos Packages
the linear solve (50%) and FEA (50%)
* Piro manages the nonlinear solve
* Tpetra manages distributed memory
linear algebra (MPI+X)

* Phalanx manages shared memory Gather MM—» Seatter
computations (X)

* @Gather fills element local solution

FEA Overview

* Interpolate solution/gradient to quad. Points
* Evaluate residual/Jacobian
* Scatter fills global residual/Jacobian

Memory Model

* First step towards performance portability
. Distributed Shared
IS the FEA Memory (DM) Memory (SM)

https://github.com/SNLComputation/Albany

; ‘ Phalanx — directed acyclic graph (DAG)-based assembly (®)

Gather
Solution

DAG Example

Interpolate
Parameter

Basis
Functions

Gather
Coordinates

Gather
Parameter

Wall-clock time (s)

|

Advantages: DAG Exampli(memoization) I
* Increased flexibility, extensibility, usability :
* Arbitrary data type support Scatter
* Potential for task parallelism
Disadvantage: |, Stored
. Field
* Performance loss through fragmentation
Extension: i

a: Base
b: Memoization

1 DMAssembly

rather

a

Bl SMAssembly [Illl])l‘()\'(‘lll(‘llts }

Solution

Haswell Haswell KNL P100 @
16MPI 16(MPI+20MP) 68(MPI+40OMP) 1(MPI+GPU)

. . . Interpolate Stored
* Performance gain through memoization Solution RSO \
Single CPU socket or GPU !

s | Phalanx Evaluator — templated Phalanx node

A Phalanx node (evaluator) is constructed
as a C++ class

Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

The evaluation type is used to
determine the data type (e.g. double,
Sacado data types)

Kokkos RangePolicy is used to
parallelize over cells over an ExeSpace
(e.g. Serial, OpenMP, CUDA)

Inline functors are used as kernels

MDField data layouts
* Serial/OpenMP - LayoutRight (row-major)
* CUDA - LayoutLeft (col-major)

(=

Residual

template<typename EvalT, typename Traits>
void StokesFOResid<EvalT, Traits>::
evaluateFields (typename Traits::EvalData workset) {
Kokkos::parallel for(
Kokkos: :RangePolicy<ExeSpace>(0,workset.numCells),
*this) ;

[

template<typename EvalT,
KOKKOS INLINE FUNCTION
volid StokesFOResid<EvalT, Traits>::
operator() (const inté& cell) const{
for (int node=0; node<numNodes; ++node) {
Residual (cell,node,0)=0.;
}
for (int node=0; node < numNodes; ++node) {
for (int gp=0; gp < numQPs; ++gp) {

Residual (cell,node,0) +=
Ugrad(cell,qp,0,0)*wGradBF (cell,node,qp,0) +
Ugrad(cell,qp,0,1)*wGradBF (cell,node,qp,1l) +
force(cell,gp,0) *wBF(cell,node,gp) ;

typename Traits>

» | Sacado — Automatic Differentiation (AD)

Speedup over DFad

=

Sacado data types are used for derivative components (ND = number of components)

* DFad (most flexible) — ND is set at run-time

* SLFad (flexible/efficient) — maximum ND set at compile-time

* SFad (most efficient) — ND set at compile-time

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND =4*2 =8

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

103 10* 10°

Problem Size (Number of Cells)

serial-sfad
serial-slfad

serial-dfad

Speedup over DFad

10 A

220

10 10 10°
Problem Size (Number of Cells)

= openmp-sfad

openmp-slfad =
&5

DFad

= openmp-dfad

dup over

Spee

200 A

100 A

103 104
Problem Size (Number of Cells)

e 11 70-sfad
cuda70-slfad

e 11 70-dfad

|

Elements

GIS4k-20k 4km-20km 1.51 million
GIS1k-7k 1km-7km 14.4 million

* Unstructured tetrahedral element meshes

* Wall-clock time averaged over 100 global
assembly evaluations (residual + Jacobian)

* Performance analysis focuses on finite element
assembly

* Notation for performance results:

r(MPI + jX), X € {OMP, GPU}

r = # MPI ranks
J = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

Architectures:

* Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

* Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

* Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

* Ride (SNL): 12 nodes [2 POWERS (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

* Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)
Compilers: gcc/icpc (xIC, armclang++ WIP)

Models:

* 3 models: MPl-only, MP1+OpenMP, MPI+CUDA

* MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

* MPI+GPU: MPI ranks assigned a single core per GPU
* CUDA UVM used for host to device communication

T Ol B 00000 |

2 | Performance Results — Node Utilization ®
Node: Single dual-socket CPU or quad-GPU

2.0 :
O B SMAssembly (NOg;\clj;}lﬁgummmW /_«2.0 B SMAssembly (N()jg\([}(jlllﬁguration\
@ 1.5 ‘ - o2 = ' a: 48]
< 1.59 3 DMAssembly b: 32(MPI+20MP) | & 1.51 1 DMAssembly b, 43(MP1+20MP)
= c: 68MPI = c: 56MPI
?‘5 1.0 d: 68(MPI+40MP) | < 1.0 d: 56(MPI+40MP)
B e: 16MPI G c 2 0x | | € 40MPI
= 0.5 f: 4(MPI4+GPU) = 0.5 | f: 4MPI+GPU)
= _ Y, ; a \l/ \ y,

0.0 Cori Cori Ride 0.0 Blake Mayer Waterman

(Haswell) (KNL) (P8,P100) (SKX) (TX2) (P9,V100)
Clusters Clusters

Speedup achieved across most execution spaces

* Kokkos Serial vs. OpenMP or CUDA (Doesn’t include refactoring improvements)
* 12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100

* Very little improvement on Skylake

Tpetra Export poor on V100 (WIP within Tpetra and CUDA9 GPUDirect issue on POWER systems)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)

T Ol B 00000 |

s | Performance Results — Strong Scalability

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

2
2
w0
N
'

p—
=
o
—_
=
p—

Wall-clock time (s)
Wall-clock time (s)

10" ! - 10" !
Devices Devices

Reasonable scaling across all devices without machine-specific optimization in Albany
* Poor GPU scaling (Export WIP within Tpetra and CUDA9 GPUDirect issue)
* Best case: Skylake at 32 devices (768 cores)

|

| Single CPU/GPU shared memory profile

SKX: 24-core vV100: 1 GPU

Other Other
Gather /Scatter

Gather/Scatter

Evaluation

Evaluation
Interpolation

Interpolati

* Residual/Jacobian Evaluation most expensive
* Gather/Scatter becoming increasingly important...

* Other: some auxiliary routines are still expensive on the GPU (~10%)

s | Summary

Progress towards performance portability across a variety of HPC
architectures using a single code base by utilizing Trilinos/Kokkos
* Multicore and manycore processors (Haswell, Skylake, KNL, TX2)

* NVIDIA GPUs (P100, V100)

We will be able to utilize next generation HPC architectures for
probabilistic sea-level predictions using Albany Land Ice
* Targets: Cori (Haswell, KNL), Summit (POWER9+V100), Aurora

Performance can be improved on all architectures

The open-source Albany multiphysics finite element code is
available here:
 https://github.com/SNLComputation/Albany

« | Future Work

* Improve performance portability of boundary conditions

More detailed profiling: vtune, nvprof, other tools?

[

Code optimizations for finite element assembly:

* More work on hierarchical parallelism (Intrepid2, KokkosKernels)
* More vectorization on CPUs

* Better node utilization (e.g. multiple CUDA instances on GPUs)

* Explicit data management to minimize memory transfers

Performance portability for solvers is an ongoing research topic
within Trilinos
* Test next generation preconditioners (Multithreaded Gauss-Seidel, FastILU)

17‘ Funding/Acknowledgements

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded
by the U.S. Department of Energy, Office of Science (0S), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

] Scientific Discovery
through
Advanced Computing

Office of Science
U.S. Department of Energy

) Sandia
gy National

—ASTMATH Laboratories

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

OAK
RIDGE

National Laboratory

s | Performance Portability — a response to heterogeneity @)

Generic Definition: For an application, a reasonable level of performance is achieved
across a wide variety of computing architectures with the same source code.

Let’s be more specific:

* Performance quantified by application execution time while strong/weak scaling.

* Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

* MPI: distributed memory parallelism — Tpetra

X: shared memory parallelism — Kokkos
* Examples: OpenMP, CUDA

Minimize data movement (efficient programming)

Increase arithmetic intensity (improve compute to memory transfer ratio) ‘

Saturate memory bandwidth (expose more parallelism)

" ‘ WIP: Hierarchical Parallelism

Hierarchical parallelism is used to expose more parallelism when strong scaling
® KOkkOS TeamPOIicy, TeamThreadRange is template<typename EvalT, typename Traits>

. volid StokesFOResid<EvalT, Traits>::
USEd tO pa ra||EIlze Over Ce"S and nOdes evaluateFields (typename Traits::EvalData workset) ({
Kokkos::parallel for(
® KOkkOS scratch Space is used to Store I;oj}i];:)s;:TeamPolicy<ExeSpace>(workset.numCells,Kokkos::AUTO()),

—

node/quadrature values in shared memory

template<typename EvalT, typename Traits>

° ~2X s(feedup for small problem sizes on GPU xoxxos e soverzon

1 1 void StokesFOResid<EvalT, Traits>::
(nee paddlng for Iarge prObIem SIZGS) operator () (const Member& teamMember) const({
. const Index cell = teamMember.league rank();
* Slowdown for all problem sizes on CPU /i Mismim ey
. cratchView gpVals (teamMember.team shmem(), numQPs, fadSize);
(need dlfferent IaVOUt) ScratchView nodeVals(teamMember.tegm_shmem(), numNodes, fadSize);
// Zero nodeVals
CUDA70 Kokkos::parallel for(
- Kokkos: :TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
201 ™\ = Residual nodevals(node) = 0; });
N Jacobian // Fill Ugrad00

\ Kokkos::parallel for(

1.5 4 VRL Kokkos::TeamThreadRange (teamMember, numQPs), [&] (const Index& gp) {
gpVals(gp) = Ugrad(cell,gp,0,0); });

// Calc Ugrad00 contribution

for (Index gp=0; gp < numQPs; ++qgp) {
Kokkos::parallel for(
Kokkos::TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {

nodeVals (node) += gpVals(gp) * wGradBF(cell,node,qp,0); }); }

// Copy to ResidualOl

Kokkos::parallel for(

1()2 1()3 1()1 1();, 1(')(5 Kokkos::TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
Residual (cell,node, () = nodeVals(node); }):;

Problem Size (Number of Cells) }

Speedup over original kernel

» | Performance Results —Weak Scalability

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

Wall-clock time (s)

Reasonable scaling across all devices without machine-specific optimization in Albany

4 x 109
3 x 100 == HSW
2 x 10°1 - RAL
—d:= P100
F —
0|
10 | [O — =__-‘-._-|.|.=——'-:=
| pg—— =
6 x 1071
== —

Devices

Wall-clock time (s)

Poor GPU scaling (Export WIP within Tpetra)

Best case: Skylake at 10 devices (280 cores)

4 x 109
3 x 100 == SKX
2 x 1091 T IR
—d-= V100
100 -
-—-‘
| S -
-1 —
6 x 10 o
-1 —
4 x 10 100 0

Devices

|

2 | Appendix: Single GPU — Full profile

KokkosProfileOverview V100 ProfileOverviewV100
Other

non-Kokkos

Gather/Scatter

Evaluation

Interpolatio

» | Appendix: Single GPU — Kokkos and non-Kokkos

KokkosProfileV100 nonKokkosProfileV100
Other

Celllnterp

Gather /Scatter
Evaluation

BC

Interpola

