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Motivation

Solution to strongly coupled multiphysics problems, often involving strong shocks:

1) be positivity preserving for p, pressure etc. (e.g. LED schemes),

2) be applicable to widely varying timescales,

2.1) allow flexible time integrator usage (e.g. RK-IMEX schemes),

3) be on general unstructured meshes, high spatial and temporal order,

4) start with ideal MHD as an effort towards multi-fluid plasma.

Astrophysical plasma (Casey Reed/NASA) Laboratory plasma (SNL)




Resistive MHD system (D=

Resistive MHD system (Fambri et al., 2017, Comp. Phys. Comm.)

5 p pv OT
9 |pv | pv@v+pl—Ty ) - _
ot [oE| TV v (E+p) - Tw)| TV |-V T+a- 2B (vB—(vB)")| =0
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p is the density. Equation of state:

v is fluid velocity.

p 1 5 1 5
E=—+4 - —||B||%, 0.
pE is the total energy. p y—1 + 2p||V|| + 2po IBIF, v >

B is the magnetic field. Stress tensor:
is the fluid viscosit - T 2
 is the fluid viscosity. T=u (Vv+(Vv) )—(p+—V-vl) .
7 is the resistivity. 3
o is the fluid permeability. Ty = 1 [B ® B — lHB||2I} .
v is the ratio of specific heats. Ho 2




HD and MHD system Wi,

m Set 7 = p = 0 for now (ideal non-viscous,non-resistive MHD):

5 p pv
pv pvv+pl—Ty
= v =0.
ot |pE| T v ((pE +p)l — Twn)
B Bv—-—v®B

m Omit the B terms (compressible Euler equations):

PG pv
7t pv| +V.-| pv@v+pl | =0
pE v ((pE +p)))

Solution strategy:

m Do continuous finite element discretization in space (P!/Q%).
m Introduce algebraic stabilization (low order diffusion + limiters).
m Do divergence cleaning for MHD (hyperbolic/parabolic/mixed).

Achievements so far:

m Extensive studies for Euler equations (different limiter designs)
m Applications to steady hydrodynamics problems (Scramjet)
m Applied explicit and implicit time stepping (explicit RK4 & Crank-Nicolson)
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Transient HD results ot

Problems solved: Sod shocktube, Woodward-Colella blast wave, Sedov point blast
etc... (Mabuza, Shadid and Kuzmin, 2018, JCP)
1D results; Top: Sod shock tube, Bottom: Woodward-Colella
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Transient HD results

Sod ShockTube - Mesh Convergence 100-3200 cells

L1 Slope L1 Slope L1 Slope L1 Slope L1 Slope
(100-200) (200-400) (400-800) (800-1600) (1600-3200)

9.36689e-01 9.65261e-01  8.52469e-01  8.06609e-01  8.60413e-01
rhoE 1.03158e+00 1.06352e+00 9.39890e-01 8.16929e-01  1.01285e+00

rhou 9.87064e-01 9.94115e-01  8.30446e-01  7.41841e-01 8.76973e-01
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Transient HD results

density

density

LeBlanc ShockTube Profiles - Conservative CFD Formulation

AFC LeBlanc Shock Tube, 1=6
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Athena LeBlanc ShockTube Roe Scheme, t=6
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Transient HD results

LeBlanc ShockTube - Mesh Convergence

L1 error L1 error L1 error Slope
(9/900) (9/1800) (9/3600) (900 1800) (1800 3600)

1.31065e-03 6.72218e-04 3.48644e-04  9.63279e-01  9.47172e-01

rhou 4.98398e-04 2.60317e-04 1.38587e-04  9.37030e-01  9.09481e-01
rhoE 1.91591e-04 9.83755e-05 5.14695e-05  9.61657e-01  9.34582e-01
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Transient HD results

2D results; Top: Radial Riemann, Bottom:

Ax = Ay = 0.0125 and At = 1 x 1075,

Sedov point blast
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Steady HD result Wi,

Steady Ma = 3 supersonic combustion ramjet engine:

N Wi S

Coarse unstructured mesh

Density Mach

65256 elements and 33859 degrees of freedom per variable.




CG (high order) scheme (=

Continuous problem Q C RY:
ur+V-f(u) =0, (x,t) € Q xRy, u(x,0) = ug(x),
u:(x,t)—R™ f:R" — R™¥9,

Semi-discrete problem in vh = pl or Q1:

un(x, 1) = {uk (e O}y, uf(x, ) = Y uf(£)e(x),

J

4 / dupdx — / V¢ - f(up)dx + /d)f(uh) -ndo =0,
dt Jo Q r

u(,0) = Mauo(*) = éjuo(x;)-
J




CG (high order) scheme W=

MCZ—g — K(U) + B(U), U(0) = Uy

Consistent mass matrix:
N,
Mc = My} ] 15 My = mijlmxm, my = / pidjdx.
Q

Convection term:

K(U) = {ki}h, ki = Z/ Vi - f(up)dx.

Boundary term:

Nk
B(U) = {bi},,-vzhp b; = —Z/ ¢if(up) - ndo.
OKeNIl

Initial condition: i
Uo = {Uy,i}; 2y, Uo,i = up(x).




Low order scheme and artificial diffusion

ML‘Z—‘: = B(U) + D(U)U + K(U).

Difference between high and low order schemes is given by the anti-diffusion:

du
F(U)= M, — MC)F —D(U)U.
The high order scheme can be written as:

ML% = B(U) + D(U)U + K(U) + F(U).

The artificial diffusion D(U) is defined by
D(U) = {Dy}, Dy =Y DY,
e

where

DS = d{ hxm, for j # i, & D) = — Z By,
J#i
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Low order scheme and artificial diffusion @™

Rusanov & Roe diffusion for systems (Kuzmin, Méller and Gurris, 2012, FCT book):

m Scalar/Rusanov diffusion:
d(e (U) = max (Amax(cu 5 Ut Uj), Amax(€ J(, )7 u;, UI)) NEE

DL = d{ lxm, for j # i, & D) = — ZD,.(JF).
J#i

m Tensorial/Roe diffusion:

c,.(je) -f(u) = R(u; c,.s.e))/\(u; c,.(je))Rfl(u; r:,.(je))7

D,S-e)=[R(u,, SNy )R (u,-j;c,.‘;))],j;éf,&oﬁe):}:—off’.
J#i




Low order scheme and artificial diffusion W

Rusanov diffusion for MHD:
(U) = max ()\max(CU ,U,’, U) )\max( jl 7Uja UI)) ) .I 7£ i7

D = d\ lxm, for j # i, & D) ZD
J#i

Let n’g_e) = c,.(je)/||c/.(je)||. The maximum eigenvalue is:

Amax(cu ’

s, 05) = 1621 [1v- 0P+ er(wyin?)]

where the fast magneto-sonic wave speed is

1 1
cr(uim) = 2 (2 +[bP) + 5V/(2 + b2 — 4226

n € R is a unit vector, ca=b-n, b= |B|2/\/ﬁ, a=, /%.




Limiting strategy (}-=

High order scheme:

ML‘Z—I: = K(U) + D(U)U + B(U) + F(U).

Element-wise limiting:

FO = (M~ M) — DO, FO = aoFD — F= 3 FO.

e

Stabilized semi-discrete scheme:

du =
MLI = K(U)+D(U)U+ B(U) + F.
Desired properties of the element limiter:
m o €[0,1].
m ae = 1 in smooth regions.
m ae = 0 in the vicinity of steep-fronts/shocks.

m o — 1 if the solution is linear.
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Limiting strategy (0]

Element-wise limiter ae calculation (Kuzmin, Basting and Shadid, 2017, CMAME):

m Construct a linearity preserving nodal limiter :

m ®;(u; — uj) depends continuously on u;, j € N(i).
m ®;(u; — u;) = 0 at a local maximum and local minimum.
m Oi(ui — uj) = (ui — uj) if uy is linear on Q; = supp{¢;}.

Z_,'#,' ﬂlj(’-’j —uj)| +e
ol =1-— ;
Zj-fx,'ﬁﬂ"uj - ul'l + &

where 8 > 0 such that Z#I.B,-jgi “(xj—x)=0,g=10,and e =1 x 10716,

m Element-wise limiter:

ag = min{®!}.

m Synchronized limiter:

ae = min{a?,alP}, OR ae = min{af,al}, where s = log p — 7y log p.



High order dissipation () =,

Add a high order diffusion term:

FOW) = FOU) +wae > DI(U)
J#i

(222 %) - (Wi )]

where
; = o
G, = m: Qd),Vuhdx = Z ciUj, cij = Z i
e
The final stabilized scheme is assembled from

RYCLL
dt

RO(U) = + KO(U) + BEO(U) + DOW)UE + FO(U).

In summary:

m Semi-discrete stabilized scheme.

m We can use various time-steppers to discretize it.
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Comparison of various synchronized limiting procedures.

1
Ax=—, At=25x10"%
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Ryu-Jones problem ()

Mesh levels: Ax =1/512,1/1024 and 1/2048. Limiter ce = min{aZ, af”}.
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Ryu-Jones problem

Mesh levels:

Ax =1/512,1/1024 and 1/2048. Limiter ae = min{a?,a}.
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Multi-dim MHD + Powell term ()

In 2D and 3D we need V - B = 0. Try adding the Powell term to the MHD system:

p pv 0
o |pv pv@v+pl— Ty B
= . V-B)=0
at [E| TV |vi(E+p-Tw)| T |v B[ (VB

B Bv—-—v®B v

Notable things with the Godunov-Powell formulation
m Aids symmetrization for the MHD system
m Helps to guarantee Galilean invariance.

m May result in incorrect Rankine-Hugoniot conditions (for discontinuous solutions)

m Provides some form of divergence cleaning.




Multi-dim MHD + parabolic divergence cleaning Wi

We add a penalty term to the induction equation to get:

5 p pv
pv pv@v+pl— Ty
— v - =0.
ot |pE| T v ((pE + p)l — Twn)
B BoQv—-v®B—c(V-B)

m Diffuses out the V - B error.
m Controls the global value ||V - B[ 1(q)-

m Requires an implicit time stepping scheme to be effective.




Comparison between cleaning strategies (Orszag-Tang) (0}

IV - Bl 1) range for no cleaning, Powell term and parabolic cleaning:
No cleaning 8.7 x 1073 to 13.955
Powell term 4.802 x 1073 to 11.0264
Parabolic cleaning  2.6318 x 10~3 to 0.6333

Plot of ||V - Bl| 1k color-scheme between 0 and 13.955:

oo 50 1am o3 g it oo % o sl

No cleaning Powell term Parabolic cleaning




Powell term (Orszag-Tang) Q="

IV - Bl| 1k range for Powell term:
Powell term  4.802 x 103 to 11.0264

DIV_B_Enor DIV_B_Eror
000400 5 10 l4e+0l 48003 5 11es01
: : — —
v - BHLl(K) between 0 and 13.955 v - B”LI(K) between 4.802 X 1073 to 11.0264



Parabolic cleaning (Orszag-Tang) (D}

V - B||;1(k) range for Powell term:
L1(K)
Parabolic cleaning  2.6318 x 10~3 to 0.6333

DIV_B_Emor DIV_B_Emor
008400 5 10 1des0l 26003 02 04 63001
) . [}
v - BHLl(K) between 0 and 13.955 IV - Bll,1 between 2.6318 x 1073 t0 0.6333




Comparison between cleaning strategies (Orszag-Tang)

IV - Bl|1(q) plot versus time:

—no cleaning
= Powell term
~— parabolic cleanil
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MHD + Powell term (Orszag-Tang) .

Orszag-Tang profile at 3 mesh levels.
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Summary (0]

Aims:
m To have a flexible CG scheme for shock MHD.
m To have stabilization that works for MHD systems.
m To have a divergence cleaning scheme.

What has been achieved:

m Some fairly good shock HD results in multi-D

m Some preliminary results for MHD in 1D and 2D

m Use of the Powell term for MHD that slightly reduces ||V - B|| 1.

m Use of the parabolic cleaning that keeps ||V - B||,;1 under control.
What's next:

m To do divergence (hyperbolic/mixed) cleaning for MHD

m To extend the current formulation to multi-fluid equations.
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