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Motivation

Solution to strongly coupled multiphysics problems, often involving strong shocks:

1) be positivity preserving for p, pressure etc. (e.g. LED schemes),

2) be applicable to widely varying timescales,

2.1) allow flexible time integrator usage (e.g. RK-IMEX schemes),

3) be on general unstructured meshes, high spatial and temporal order,

4) start with ideal MHD as an effort towards multi-fluid plasma.

Astrophysical plasma (Casey Reed/NASA) Laboratory plasma (SNL)



Resistive MHD system

Resistive MHD system (Fambri et ai., 2017, Comp. Phys. Comm.)

0

a r7 [pv v +19vpl TAA —T

at

[ppvl

PE ±v. v• ((pE + p)I —
1
+ v —v • T + q — µo

B•(VB—(VB)T)

BOv—v0B — µo(pB—(VB)T)

=0.

p is the density.
v is fluid velocity.
pE is the total energy.
B is the magnetic field.
ft is the fluid viscosity.
n is the resistivity.

Po is the fluid permeability.
7 is the ratio of specific heats.
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HD and MHD system

• Set 77 = µ= 0 for now (ideal non-viscous,non-resistive MHD):
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• Omit the B terms (compressible Euler equations):
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Solution strategy:

• Do continuous finite element discretization in space (Pl/Q1).

• Introduce algebraic stabilization (low order diffusion + limiters).

• Do divergence cleaning for MHD (hyperbolic/parabolic/mixed).

Achievements so far:

• Extensive studies for Euler equations (different limiter designs)

• Applications to steady hydrodynamics problems (Scramjet)

• Applied explicit and implicit time stepping (explicit RK4 & Crank-Nicolson)



Transient HD results

Problems solved: Sod shocktube, Woodward-Colella blast wave, Sedov point blast
etc... (Mabuza, Shadid and Kuzmin, 2018, JCP)
1D results; Top: Sod shock tube, Bottom: Woodward-Colella
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Transient HD results

Sod ShockTube - Mesh Convergence 100-3200 cells

L1 Slope
(100-200)

rho 9.36689e-01

rhoE 1.03158e+00

rhou 9.87064e-01

L1 Slope
(400-800)

11 Slope
(800-1600)

11 Slope
(1600-3200)

Sod Shock Tube AFC
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1.06352e+00 9.39890e-01 8.16929e-01 1.01285e+00

9.94115e-01 8.30446e-01 7.41841e-01 8.76973e-01
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Transient HD results
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LeBlanc ShockTube Profiles - Conservative CFD Formulation
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Transient HD results

LeBlanc ShockTube - Mesh Convergence

11 error L1 error 11 error Slope Slope
(9/900) (9/1800) (9/3600) (900-1800) (1800-3600)

rho 1.31065e-03 6.72218e-04 3.48644e-04 9.63279e-01 9.47172e-01

rhou 4.98398e-04 2.60317e-04 1.38587e-04 9.37030e-01 9.09481e-01

rhoE 1.91591e-04 9.83755e-05 5.14695e-05 9.61657e-01 9.34582e-01
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Transient HD results

2D results; Top: Radial Riemann, Bottom: Sedov point blast

Ax = Ay = 1/128 and At = 1 X 10-3 p vs x trace a x = y and y = —x

Ax = Ay = 0.0125 and At = 1 X 10-5.

OS

p vs x, L = 2.25 and t = 0.24.



Steady HD result Rim

Steady Ma = 3 supersonic combustion ramjet engine:

$40111i3r0;

Coarse unstructured mesh

Density Mach

65256 elements and 33859 degrees of freedom per variable.



CG (high order) scheme

Continuous problem 12 c Rd:

ut + V • f(u) = 0, (x, t) E f2 x R+, u(x, 0) = uo(x),

u : (x,t) H Rm, f Rm Rmxd.

Semi-discrete problem in Vh = P1 or Ql:

uh(x, =1.,i(x,t)Ik_,, iiijx, =Eujt(095Ax),

dt 1

d
Ouhdx — f VO • f(uh)dx f Of(uh) • nda = O,

uh(.. 0) = Flhuo(') = Eopo(xj).



CG (high order) scheme

Consistent mass matrix:

Convection term:

Boundary term:

Initial condition:

dU
Mc dt = K(U)-F B(U), U(0) = Uo.

mc = mu = mxm, mu — (15Adx.

NK

K(U) = {ki}n, ki = E f vo; • f(uh)dx.
e=1 Ke

NK

B(U) =

e=1 

= — E f oiquh) • ndu.
aKerlr

NUo=fUo,11,—hp U0,1 = uo(x).



Low order scheme and artificial diffusion

dU
ML—

dt 
= B(U) + D(U)U K(U).

Difference between high and low order schemes is given by the anti-difFusion:

dU
F(U) = (ML — Mc)—

dt 
— D(U)U.

The high order scheme can be written as:

dU
ML —

dt 
= B(U)+D(U)U K(U)+ F(U).

The artificial diffusion D(U) is defined by

D(U) = {Du}, = EDJe),
where

DCe) = cl(e) Imxm, for j DiCf) = — Ede).



Low order scheme and artificial diffusion

Rusanov & Roe diffusion for systems (Kuzmin, Mailer and Gurris, 2012, FCT book):

• Scalar/Rusanov diffusion:

c4je)(U)= max (Arna.(4e), Lk, Uj),Amax(4e), Uj, , j

C;o_ie) = 4e)/,,,x,,,, for j Rrie) = — E E;oje).

• Tensorial/Roe diffusion:

4e) • r(u) = R(u; cie))A(u;cie))1?-1-(u; ),

E4je) = [R(Liu; C,Cie))A(Ujj; 4e))1R-1(Uu; cje))] , j = E —de)
u



Low order scheme and artificial diffusion

Rusanov diffusion for MHD:

clie)(U)= max (Arna,,(de), VIr Uj), Aniax(c(e), 1.11, , j

DCe) = cl(e)Id mxm, for j C)ie) = —E de).

Let nCe) = cCe) /11c*C-e)11. The maximum eigenvalue is:u

Amax(4e), Uj) =114°11[1v • nr1+ cf(Uj; r4e))] ,

where the fast magneto-sonic wave speed is

1 1 / 
cf(u; n) = (a2 +1612) + (a2 lb12)2 —

n E Rd is a unit vector, ca = b • n, b =1B12/,./19, a =



Limiting strategy

High order scheme:

dU
Mt—

dt 
= K(U)+D(U)U + B(U)+ F(U).

Element-wise limiting:

F(e) = (M(Le) — M(ce))0(e) — D(e)(U(e))0), P(e) = CEeF(e) = E p(e)

Stabilized semi-discrete scheme:

dU
Mt—

dt 
= K(U)+D(U)U + B(U) -F P.

Desired properties of the element limiter:

• ae E [0,1].

• ae = 1 in smooth regions.

• cee = 0 in the vicinity of steep-fronts/shocks.

• ae = 1 if the solution is linear.

1:7)Labor..



Limiting strategy

Element-wise limiter ae calculation (Kuzmin, Basting and Shadid, 2017, CMAME):

• Construct a linearity preserving nodal limiter :

• <Mu; — uj) depends continuously on uj, j E JO).
• (Mu; — u1) = 0 at a local maximum and local minimum.
• 4);(u; — uj) = (u; — uj) if uh is linear on f2; = supp{4,1}.

(1), E jvi ui) + 6

OUluj c

where Oij > 0 such that E.w Ougi • (xj — xi) = 0, q = 10, and c = 1 x 10-16.

• Element-wise limiter:

c:c11 = minfd:fl.

• Synchronized limiter:

ae = min{aei af.P}, OR ae = asel, where s = log p — -y log p.



High order dissipation

Add a high order diffusion term:

where

Pe)(u)= Pe)(u)+coaeE(4;)(u)[Gid- Gi (x, ,) (ui_u;)i,
2
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The final stabilized scheme is assembled from

R(e)(U) = M(e) 
d u( 

dt

e) 
K(e)(U) B(e)(U) D(e)(U)lie) t(e)(U).

L 

In summary:

• Semi-discrete stabilized scheme.

• We can use various time-steppers to discretize it.



B rio-Wu test

Comparison of various synchronized limiting procedures.

Ax = — 
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At = 2.5 x 10-4.
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Ryu-Jones problem

Mesh levels: Ax = 1/512,1/1024 and 1/2048. Limiter a, = min{c4,ar}.
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Ryu-Jones problem

Mesh levels: Ax = 1/512,1/1024 and 1/2048. Limiter a, = min{a:,a:}.

- a.thena
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Multi-dim MHD + Powell term

In 2D and 3D we need V • B= O. Try adding the Powell term to the MHD system:

8 pv[p v7 

•

igvpv -F 
p 
I — T

Aat PE v v • ((PE p)I — T:4)
B B®v—v®B [vg B (V • B) — O.

•
v

Notable things with the Godunov-Powell formulation

• Aids symmetrization for the MHD system

• Helps to guarantee Galilean invariance.

• May result in incorrect Rankine-Hugoniot conditions (for discontinuous solutions)

• Provides some form of divergence cleaning.



Multi-dim MHD + parabolic divergence cleaning

We add a penalty term to the induction equation to get:

p pv
a [pv +v.[ pv0v+pl—Tm 

= o.at PE v • ((pE p)I — TM)
B BOv—v0B— cgv • B)I

• Diffuses out the V • B error.

• Controls the global value 110 • BM L1(m.
• Requires an implicit time stepping scheme to be effective.



Comparison between cleaning strategies (Orszag-Tang)

BIlLi(K) range for no cleaning, Powell term and parabolic cleaning:

No cleaning 8.7 x 10-3 to 13.955
Powell term 4.802 x 10-3 to 11.0264
Parabolic cleaning 2.6318 x 10-3 to 0.6333

Plot of 11V • B110(K) color-scheme between 0 and 13.955:

No cleaning

111

Powell terrn Parabolic cleaning



Powell term (Orszag-Tang)

110 • BIlLi(K) range for Powell term:

Powell term 4.802 x 10-3 to 11.0264

DIV_B_Erta
0.0.00 5 10 1.9..01

11 ' B II L1(K) 
between 0 and 13.955

1:11V9_Error
48.-oa 5 11.01

B Mow) between 4.802 x 10-3 to 11.0264



Parabolic cleaning (Orszag-Tang)

110 • B111.1 (K) range for Powell term:

Parabolic cleaning 2.6318 x 10-3 to 0.6333

D1V_B_Erra
0.0.00 5 10 1.9.01

11 V • BII L1(K) 
between 0 and 13.955

2 3-'0.7 1

Equ between 2.6318 x 10-3 to 0.6333



Comparison between cleaning strategies (Orszag-Tang)

Bllo(Q) plot versus time:
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MHD + Powell term (Orszag-Tang)

Orszag-Tang profile at 3 mesh levels.
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Summary

Aims:

• To have a flexible CG scheme for shock MHD.

• To have stabilization that works for MHD systems.

• To have a divergence cleaning scheme.

What has been achieved:

• Some fairly good shock HD results in multi-D

• Some preliminary results for MHD in 1D and 2D

• Use of the Powell term for MHD that slightly reduces • 13110.

• Use of the parabolic cleaning that keeps IT • BIIL1 under control.

What's next:

• To do divergence (hyperbolic/mixed) cleaning for MHD

• To extend the current formulation to multi-fluid equations.
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