
Sparse PCE surrogate assisted inversion algorithm for ultra-deep electromagnetic resistivity
logging-while-drilling data
Han Lu , Jiefu Chen, Xuqing Wu, Xin Fu, University of Houston; Mohammad Khalil, Cosmin Safta,
Sandia National Laboratories; YueqM Huang, Cyentech ConsultMg LLC

Summary

The recent development of azimuthal electromagnetic
(EM) resistivity logging-while-drilling (LWD) tool has
greatly extended the depth of investigation and brought
new challenges to inversion and interpretation of
logging measurements. The results by deterministic
methods like Levenberg-Marquadt algorithm (LMA) are
oftentimes strongly affected by chosen initial models.
The development of surrogates/meta-models in
optimization problems, combined with deterministic
methods, offers the opportunity to enhance the
performance of the earth model interpretation. In this
paper, we construct a surrogate based on polynomial
chaos expansion (PCE) for the ultra-deep azimuthal
electromagnetic resistivity LWD measurements and
use it to perform a two-stage pixel-based inversion. A
Bayesian compressive sensing (BCS) technique is
employed to efficiently build a sparse PCE surrogate
for high-dimensional systems. The results show that
the sparse PCE surrogates are helpful in avoiding local
minima during the inversion.

Introduction

Geosteering is the proactive control of a wellbore
placement based on the downhole LWD
measurements, aiming at maximizing the economic
production from the well. The earth model parameters
can be inferred by the inversion of LWD measurements
such as the azimuthal electromagnetic resistivity
logging data. The geosteering inversion problem is
always challenging because (a) the inverse problems
in geosteering are inherently nonlinear and ill-posed;
(b) measurements are usually sparse; (c) LWD
measurements are noisy. In 1D pixel-based inversion,
the earth model is divided into dozens or even
hundreds of thin layers, resulting in large number of
model parameters to be inferred. The traditional
gradient-based (local) optimization methods such as
LMA takes the advantage of differentiable objective
function, converges rapidly but only finds the local
minimum, so usually the results are strongly affected
by the initial guess.

Surrogates or meta-models, as the approximation of
the original experiments or computer simulations, have
been extensively used in optimization problems
involving computationally-intensive models (Goel et al.,
2007). There are a number of studies comparing the
performance of different surrogate models, including
radial basis functions, kriging, polynomial chaos
expansions, and artificial neural networks, as well as
their recommendations for specific applications (see
Simpson et al., 2001, for example). In this paper, the
original forward model is replaced by a PCE surrogate
to expedite the inversion process. The PCE is used to
represent an arbitrary random variable, under certain

conditions, as a spectral expansion in terms of known
random variables. The high-dimensionality of the set of
input (design) variables leads to a prohibitively large
number of basis terms in the PCE representation, and
thus the number of required sample points increases
exponentially. This is referred as the "curse of
dimensionality'. To combat this challenge, Sargsyan et
al. developed an algorithm to construct a sparse PCE
surrogate (Sargsyan et al., 2014) by "learning" and
retaining the most relevant basis terms with the aid of
Bayesian compressive sensing (Babacan et al., 2010).

In general, the accuracy, robustness, efficiency, and
computational simplicity are important criteria for
evaluating the usefulness of surrogates. However,
empirical observations show that large approximation
errors do not always mislead the optimization (Jin,
2011). Furthermore, one can complement surrogates
with high-fidelity forward model simulations. This is
often known as surrogate model management. Based
on these observations, we propose a two-stage
optimization method for the geosteering inversion
assisted by sparse PCE surrogates. We will show that
the PCE surrogates aid in finding a better initial set of
parameters and consequently the inversion accuracy
is greatly improved.

Polynomial chaos surrogate

Consider a forward computational model z = f (A) ,
where A = (24,A2, ..., Ad) is a d-dimensional input
vector and z is a scalar output. In PCE theory
(Wiener, 1938; Ghanem and Spanos, 2003), both the
input parameters and the output of interest are
represented as a series involving orthogonal
polynomials Wk(k) in terms of independent and
identically distributed random variables =
2, kd). As such, the inputs can be written as

K,„-1

AiOlk(k)
k=0

and the output is written as

K-1

ZP1-(0) ci
1=0

(1)

(2)

where Atk , i = 1, 2, , d , k = 0, 1, , Kin — 1 , and cj ,
1 = 0, 1, , K — 1, are the coefficients that completely
characterize the random variables. K and Kin are the
number of basis terms in the input and output PC
expansions, respectively. For surrogate construction,
Kin is usually fixed, while the value of K is decided by
the output accuracy requirements.
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It is noted that the dimension of the input vector a does
not need to be equal to d. The finite PCEs tend to lead
d to be at least as large as, and often larger than a
(O'Hagan, 2013). The type of polynomials Wk(f) used
is chosen based on the distribution of to satisfy
orthogonality. For example, Hermite polynomials are
used for normally distributed random variables and
Legendre polynomials are used for uniformly
distributed random variables. For surrogate
construction purposes, one can assume that Ai is a
linear PCE of the individual fi to sufficiently cover the
range of interest for each parameter. Subsequently, an

available dataset of input-output pairs {.11, z(2.1)} 1iy-1
can be easily transferred to D = {f, zi} N 1 and what
remains is determining ck with the given data.

There exist intrusive and non-intrusive methods for the
calculation of the polynomial coefficients ck. Intrusive
methods are only applicable to those forward models
that have explicit equations, and thus not suitable for
geosteering logging problems.

Alternatively, non-intrusive methods do not require an
explicit representation of the forward model but treat it
as a black box. Projection-based non-intrusive
methods provide the coefficients as

Ck = (z, th)/( 4'k,11)k) (3)

where ( th, Ok) is in practice known exactly, (z, iPk)
can be calculated by numerical integration

(z, k) = f IPkg)13(04

One can use Monte Carlo sampling or quadrature rules
to sample from the distribution pg"). However, in high-
dimensional problems, both methods require a large
number of simulation runs even with sparse sampling
techniques, rendering those approaches impractical for
the inversion problems under consideration.

Alternatively, eq. (2) can be treated as a regression
model. Since the PCE is only an approximation of 1:lan
error term is added to the equation. Therefore, we have

K-1

= Ck Wk(f) + E (5)

k=0

The regression coefficients ck can then be computed
using linear regression.

(4)

Bayesian compressive sensing for PCE

From the Bayesian point of view, the solution to the
problem of determining the coefficients ckis a posterior
probability density function q(c) . Based on Bayes'
formula, we can write:

q(c) cx LD(c)p(c) (7)

Where LD(c) is the likelihood, a measure of a
goodness-of-fit of the corresponding surrogate with
respect to the given data D , and p(c) is the prior
distribution of c. Given a zero-mean normal distributed
noise model with standard deviation cr, we can write
the likelihood as

liv(c) = (2n-a2) 2 exp EitY 
(z,-z,(f‘))2)

=1  (8)

This problem becomes intractable for high dimensional
problems since the number of unknown coefficients will
grow rapidly with increasing dimensionality. In many
practical applications applications, most of the basis
functions in a PCE will have near-zero coefficients, i.e.
the vector c is sparse. It is efficient and reasonable to
only recover the most significant terms of the PCE,
both in the construction and evaluation of the PCE
surrogates. To this end, (Sargsyan et al., 2014)
proposed to use Bayesian compressive sensing (BCS)
to compute a sparse representation of c given
available data (Ji et al., 2008; Babacan et al., 2010).
The key of inferring a sparse PCE is to impose a prior
distribution on c that induces sparsity. A commonly
used sparsity-inducing prior is the Laplace prior

p(c) = (2)K+lexpa

k=0

The vector c that maximizes the posterior q(c) in eq.
(7) coincides with the solution of the classical
compressive sensing problem

arg mx(logLD(c) —

where the regularization term allch corresponds to
the sparsity-inducing prior distribution. The positive
parameter a is a user-defined value that controls the
level of sparsity. However, the Laplace distribution is
not conjugate to the Gaussian likelihood defined in eq.
(8) and thus does not allow a tractable Bayesian
analysis. This issue was addressed in sparse Bayesian
learning, particularly with the Relevance vector
machine (RVM) (Tipping, 2001). Instead of directly
using the Laplace prior, a hierarchical prior distribution
is constructed by with a Gaussian prior distribution on
c

Ck
p(Cklsk) =  exp (-

2s-
)

\127r.slc

and a gamma prior to the hyper-parameter si

cr2skz

p(slila2) = 
a2 

exp (  
2 )

(9)

(10)

(12)

with a resulting (marginalized) Laplace prior density

K-1

p(Cla2) = fo np(cklsok 4,silaZ)d 
k=0

K-1
= _a e-aickl
1 1 2

(13)

k=0

This procedure has been implemented in the Bayesian
LASSO method (Hans, 2009). For details, see
(Babacan et al., 2010; Tipping et al., 2003).

PCE-assisted pixel-based geosteering inversion
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The accuracy is usually an import criterion of
evaluating a surrogate. However, empirical
observations show that a surrogate with large
approximation errors can be helpful when used for
optimization, as shown in Figure 1.

Figure 1: Examples of surrogates that have large
approximation errors but are good for global minimum
search.
This is particularly true a for high-dimensional non-
linear optimization problem since there might be a
large number of local optima in the solution space. A
low-order polynomial-based surrogate (PCE), albeit
possessing large errors, is smoother in nature.
Therefore, such a surrogate with large approximation
error should be used in combination with the original
forward model in order to get an accurate solution. We
propose a two-stage inversion method with the work
flow shown in Figure 2.

As shown in Figure 2, a sparse PCE surrogate for the
original forward model is constructed using Bayesian
compressive sensing. At stage 1, the surrogate
replaces the original forward model in the inversion
process. The surrogate used in stage 1 does not need
to be highly accurate, as the low-order sparse PCE
surrogate captures the smooth trends in the response
surface, and the solution at this stage is considered to
be close to the global optimal solution. At stage 2, we
perform the deterministic inversion process with the
actual forward model using the initial values obtained
from stage 1. Compared to conventional deterministic
inversion algorithms, this surrogate-assisted two-stage
strategy may have a better chance of escaping local
minima and reaching the global minima (i.e. optimal
solution).

Simulations

Our method framework utilizes the C++ library named
"Uncertainty Quantification toolkit" (UQTk)
(Debusschere et al., 2016), developed by Sandia
National Laboratories. We construct PCE surrogates
for the forward model that computes the ultra-deep
azimuthal EM resistivity LWD tool responses in layered
formation at 2kHz, 6kHz and 24kHz working
frequencies, giving 72 measurement curves as the
output. For each curve, we construct an independent
sparse 2nd-order PCE using Bayesian compressive
sensing. The input earth model parameters are
transferred into pixel-based models, offering more
flexibility compared to model-based inversion since the
number of layers does not need to be prespecified
(therefore avoids the risk of overestimating or
underestimating the complexity of the earth model for
inversion). The details of the input data are given in
Table 1.

Table 1: input parameter configurations

Number of layers

Layer thickness

Layer resistivity

Depth of investigation

52

2ft

0.1 ohmmm — 300 ohimmm

-50ft — 50ft

The database has size
1. 6 • 105 and contains
model parameters of
length 52 and
corresponding tool signal
for each PCE. We tested
the original LMA inversion
and PCE-assisted LMA
inversion with the tool
signals generated by a 7-
layer model with resistivity
values of 2 ohm • m, 50
ohm•m, 200 ohm•m, 100
ohm • m, 20 ohm • m, 5
ohm•m and 1 ohm•m from
the top to the bottom, as
shown in the up panel of
Figure 3. The thickness of the layers varies from 2ft to
12ft. The inversion is conducted at every 10ft while the
total working region extends to 200ft horizontally. The
drilling tool moves from the top layer to the bottom
layer, as represented by the dotted lines. For
deterministic methods, multi-start local searches
scheme is suggested (Haftka et al., 2016), which is
commonly used in industry. Therefore, we assign 8
initial models of different resistivity and number of
layers to both methods and run in parallel, the final
result is the one with the smallest data misfit. The
results in Figure 3 indicate that the PCE-assisted
inversion recovers the earth model better than the
conventional LMA. Meanwhile, due to its sparsity, the
PCE evaluation time of one input vector is only several
milliseconds for all the 72 curves, being approximately
2% of the original forward model execution time.
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Figure 4: The vertical profile of
formation resistivity.
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Figure 2: PCE-assisted inversion work flow.
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Figure 3: Top: The real earth model. Middle: Model
reconstructed by only using original forward model. Bottom:
Model reconstructed by PCE-assisted two-stage inversion

method.

To further demonstrate how the PCE surrogates help
in reaching the the optimal solution, we show the multi-
start inversion results of a single logging point. The y-
axis represents the distance to the boundary and y = 0
is the location of the tool. The x-axis represents the
resistivity in log scale. The real model is shown in
Figure 4. In this test, 15 initial models of different types
are assigned to both methods. We picked the best 8
results (i.e. those with smaller data misfit) from the 15
results obtained by each method and show in Figure 5.
The left panel shows that in the original inversion,
different initial models lead to very different solutions.
This indicates that many of these initial models lead to
local optimum. On the other hand, the solutions by the
proposed method shown in the right panel are highly
consistent with each other and also with the ground
truth.
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Figure 5: Left: The inversion results from the original
inversion. Right: The inversion results from PCE-assisted

inversion.

Conclusion

We proposed a sparse PCE surrogate assisted
inversion algorithm for ultra-deep azimuthal EM
resistivity logging data. Numerical results suggest that
the sparse PCE surrogates aid in reaching the globally-
optimal solution.
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