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D. Raabe, et al., Steel Res. Int., 2015
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3 1 What makes HEAs unique?
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High Entropy Alloys: primarily solid solutions containing 5+ alloying constituents, where the
solutions have high configurational entropy (ASconf > 1.4R , approx. 12 J/mol-K).

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties in conventional alloys.

Competition between Gibbs energy for solid
solution and intermetallic formation
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Thermodynamically stable and predictable
solid solution microstructure, independent
of processing route.
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*Caveat — several HEAs are multiphase and contain intermetallics

**Cannot ignore enthalpy!

This hypothesis remains controversial and highly-debated, and why
the proposed work has high scientific impact potential.



4 Cast microstructure of CoCrFeMnNi HEA
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51 Additive manufacturing of HEAs

Why AM? Faster cooling rates, smaller non-metallicmAl2jsion size, material waste, etc.

Show low porosity, single phase parts can be built with the LENS technique.
Metrics for success will be from:

• Fully dense part produced by LENS.
• Single phase (FCC) microstructure with limited chemical segregation.
• Similar or superior mechanical behavior to HEA literature.
• Similar or superior corrosion behavior to HEA literature.

o Will hypothesis that 20 at% Cr leads to similar/identical corrosion
behavior as 304L stainless steel hold?

Project end goals: Use in situ mixing capabilities of LENS technique to rapidly explore alloy
space and design gradient materials.

Understand contribution of all elements to passivity of these alloys. Are single element
contributions enough to make conclusions?
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MMA12 Should l add a separate slide on this including literature?
Melia, Michael Anthony, 3/19/2019



61 Powder and DED characteristics
Average powder diameter = 67 [tm Build direction

2 mm

Open architecture Laser Engineered Net Shaping (LENS) system using a 2kW
fiber laser (1064 nm):
• Inert atmosphere maintained at <50ppm 02 and <10ppm H20 by a

continuously flowing Ar gas.
• Laser power: 350 — 400 W.
• Build velocity: 400 — 600 mm/min.
• A 90 degree cross hatch build pattern was employed, first material

deposited each layer was the perimeter of the build.

S®

Focused laser
Hatch

beam 
- WidthPowder feed

Layer
,, Thickness

Scan direction (x)

Courtesy of Andrew Kustas

Composition (wt%) Al C Co Cr Fe Mn Ni N O S

Powder 0.003 0.005 20.91 18.46 20.14 19.06 21.34 0.002 0.064 0.008

As-built 0.006 0.005 21.3 18.2 20.5 18.5 21.5 0.0021 0.055 0.005

1

Powder from Ames Lab: Drs. Emma White and Iver Anderson Chemical analysis by NSL Analytical.



71 Density/porosity of DED HEA

Archimedes density measurement was
performed to quantify porosity throughout as-
built specimen.

Theoretical density = 8.04 g/cm3
Archimedes density = 7.94 g/cm3

1.2 vol% porosity

All observed porosity was in the form of gas
porosity (10 to 40 gm in diameter).
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8 Microstructure characterization
Grain size = 42.1
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MMA3 Why do we care about GBC.
Melia, Michael Anthony, 3/13/2019



9 1 Microstructure characterization
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10  Microstructure characterization of CoCrFeMnNi alloy
BSE image Fe-Ka 1500
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11 I Microstructure characterization of CoCrFeMnNi alloy
As-built
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12 Mechanical properties of CoCrFeMnNi alloy
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nodic polarization behavior of CoCrFeMnNi alloy
1.2
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MMA7 Suggest the 3 possible routes to why Rp and breakdown potential are different from AP vs annealed and HEA vs 304.
Melia, Michael Anthony, 3/13/2019



141 Anodic polarization behavior of CoCrFeMnNi alloy
1.2 

Breakdown potentials from
corrosion studies in NaC1 solutions.
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The breakdown potential for similar CoCrFeMnNi alloys in NaC1 solutions were 100-200
mV lower than the as-built and annealed material in this study.

Possibly because of the refinement of nonmetallic inclusions common for AM material.
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Anodic polarization behavior of CoCrFeMnNi alloy
compared to 304L stainless steel
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Luo et al.
(2018)

This study performed in 0.1 M H2SO4 shows significantly more corrosion of
the HEA. Had concluded passive film was less stable than 304L because:

• Less Cr was present in film.
• More hydroxide species.
• Lack of bounded water.



16 1 Anodic polarization behavior of CoCrFeMnNi alloy
compared to 304L stainless steel

Pitting resistance equivalent number (PREn) = %Cr+3.3%Mo+30%N

PREMN = %Cr+3.3%Mo+30%N-1.0%Mn (Rondelli et al. 1995)

Composition (wt%) Cr Mn Mo N PREMN

304L 18.4 1.76 0.31 0.073 18.8

As-built 18.2 18.5 0.002 0.002 -0.2334

The PREmN may not make complete sense here, but
there have been plenty of studies showing Mn has an
adverse effect on local corrosion resistance of steels:
• Ahila et al. (1996)
• An et al. (2016)
• Kemp et al. (1995)
• Rondelli et al. (1995)
• Toor et al. (2008)
• Zhu et al. (1998)
• Zhang et al. (1999)
• Tjong et al. (1986)
• Moon et al. (2019)

What about the other alloying elements?
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17 Passive behavior of CoCrFeMnNi alloy
Calculated Pourbaix diagram for CoCrFeNi alloy
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B. Zhang, Y. Zhang, S.M. Guo, A therrnodynarnic study of corrosion behaviors for CoCrFeNi-
based high-entropy alloys, Journal of Materials Science, 53 (2018) 14729-14738.



18 Pit morphology of CoCrFeMnNi alloy as-built
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20 Pit morphology of CoCrFeMnNi alloy annealed

Signs of lacy
pit cover.
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Particles at pit bottom.

Typically observed lower number of pits on the annealed specimen after a CPP measurement.

Pit bottom was smooth compared to as-built HEA. Pit stability implications?



211 Conclusions
Successfully built a low porosity, single FCC phase HEA
with the LENS technique.

Chemical heterogeneity persists but is less severe than as-cast
material. Post process heat treatments homogenized
microstructure.

Mechanical properties were similar to previous work with
minimal sample to sample scatter compared to other additive
work.
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Corrosion behavior showed a significant passive region in 0.6 ci j,
M NaC1 solutions, however it was not as large as 304L 1 0.4 -

-,C

stainless.
• Likely culprit is abundance of Mn.

• Galvanic couple effects.
• Less stable passive corrosion product.

• Pit morphology and passivation studies should better define this.
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241 Powder and DED characteristics
Average powder diameter = 67 [tm Build direction

2 mm

Open architecture Laser Engineered Net Shaping (LENS) system using a 2kW
fiber laser (1064 nm):
• Inert atmosphere maintained at <50ppm 02 and <10ppm H20 by a

continuously flowing Ar gas.
• Laser power: 350 — 400 W.
• Build velocity: 400 — 600 mm/min.
• A 90 degree cross hatch build pattern was employed, first material deposited

each layer was the perimeter of the build.

S®

Focused laser
Hatch

beam 
- WidthPowder feed

Layer
,, Thickness

Scan direction (x)

Courtesy of Andrew Kustas

Composition (wt%) Al C Co Cr Fe Mn Ni N O S

Powder
0.003 ±
0.00045

0.005 ±
0.00075

20.91 ±
0.42

18.46 ±
0.37

20.14
± 0.40

19.06 ±
0.38

21.34 ±
0.43

0.002 ±
0.00026

0.064 ±
0.0096

0.008 ±
0.0012

As-built
0.006 ±
0.00012

0.005 ±
0.00075

21.3 ±
0.43

18.2 ±
0.36

.20 5
18.5 ±
0.37

21.5 ±
0.43

0.0021 ±
0.00032

0.055 ±
0.0083

0.005 ±
0.00075

1

Powder from Ames Lab: Drs. Emma White and Iver Anderson Chemical analysis by NSL Analytical.



25 Mechanical properties of CoCrFeMnNi alloy
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261 Pit morphology of CoCrFeMnNi alloy as-built

Early stages of pitting show propagation
below surface can occur via this
preferred interdendrite corrosion.

I
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271 Pit morphology of CoCrFeMnNi alloy compared to 304L
_As-built HEA As-built 304L
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Annealed/wrought conditions show flat pit bottoms and lacy pit morphology.
Inter/intra dendrite regions will have some control of pit morphology/propagation for as-built material.



28 I What causes this preferred interdendrite corrosion?

Short answer: chemical heterogeneity,
specifically enriched areas of Mn.

Long Answer: several factors
involving how Mn impacts passivation
locally:

• Mn has the lowest Nernst potential
of all major alloying elements,
leading to galvanic coupling effect.

• Less stable passive corrosion
product in areas enriched in Mn
(possibly depleted in Cr).

What dominates?
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