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High Entropy Alloys (HEAs): Unusual mechanical
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: | What makes HEAs unique?

High Entropy Alloys: primarily solid solutions containing 5+ alloying constituents, where the
solutions have high configurational entropy (AS,, >1.4R, approx. 12 J/mol-K).

High configurational entropy is believed to thermodynamically suppresses phase separation, a

primary route for degradation of mechanical properties in conventional alloys. DOOE
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4| Cast microstructure of CoCrFeMnNi1 HEA
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5| Additive manufacturing of HEAs

Why AM? Faster cooling rates, smaller non-metallicMmA121sion size, material waste, etc.

Show low porosity, single phase parts can be built with the LENS technique.
Metrics for success will be from:

= Fully dense part produced by LENS.
= Single phase (FCC) microstructure with limited chemical segregation.
= Similar or superior mechanical behavior to HEA literature.
= Similar or superior corrosion behavior to HEA literature.
o Will hypothesis that 20 at% Cr leads to similar/identical corrosion
behavior as 304L stainless steel hold?

Project end goals: Use in situ mixing capabilities of LENS technique to rapidly explore alloy
space and design gradient materials.

Understand contribution of all elements to passivity of these alloys. Are single element
contributions enough to make conclusions?
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Powder and DED characteristics

Average powder dlameter = 67 um Build direction

ﬂENS® * \

Focused laser
beam

Open archltecture Laser Englneered Net Shaping (LENS) system using a 2kW
fiber laser (1064 nm):
* Inert atmosphere maintained at <50ppm O, and <10ppm H,O by a

continuously flowing Ar gas. ' T I—
« Laser power: 350 — 400 W. \ Scan direction (x) /
e Build velocity: 400 — 600 mm/min. Courtesy of Andrew Kustas

* A 90 degree cross hatch build pattern was employed, first material
deposited each layer was the perimeter of the build.

Layer
Thickness

Composition (wt%) Al C Co Cr Fe Mn Ni N 0 S
Powder 0.003 0.005 20.91 18.46 |20.14| 19.06 | 21.34 | 0.002 | 0.064 | 0.008
As-built 0.006 0.005 21.3 18.2 | 20.5 18.5 21.5 |1 0.0021 | 0.055 | 0.005

Powder from Ames Lab: Drs. Emma White and Iver Anderson Chemical analysis by NSL Analytical.



7| Density/porosity of DED HEA

Archimedes density measurement was
performed to quantify porosity throughout as-
built specimen.

Theoretical density = 8.04 g/cm?
Archimedes density = 7.94 g/cm?

All observed porosity was in the form of gas
porosity (10 to 40 um in diameter).

1.2 vol% porosity
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9| Microstructure characterization
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| Mlcrostructure characterization of CoCrFeMnNi1 alloy
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M. Laurent-Brocq, et al., Insights into the phase diagram of the CrMnFeCoNi high entropy
alloy, Acta Materialia, 88 (2015) 355-365.




Microstructure characterization of CoCrFeMnN1 alloy
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12 echanical properties of CoCrFeMnNi1 alloy
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ﬁﬂAnodic polarization behavior of CoCrFeMnN1 alloy |

0.8 : 1.2 |
- [ N L i
0.6- | | A Breakd.own. &
| 08 - ©  Repassivation : ‘
5 0.4- | _ A 4
20.2- ;D 0.4 A . |
> . :
0.0- R -
T 0.0 1 o 0 A
_0.2- As-built HEA A =
Annealed HEA S E ]
0.4 ._ Wrought 304L Py | |
10 1010 10 10 10 10 10%10° 107 10 10°  As-built HEA ~ Annealed  yyy0ht 3041

Current Density (A/cm®)

Cyclic polarization performed in quiescent 0.6 M NaCl (pH ~ 6).
Potential scan rate = 1 mV/sec.
Why would the breakdown potential of the HEA be different from 304?

HEA |
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4| Anodic polarization behavior of CoCrFeMnNi1 alloy
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The breakdown potential for similar CoCrFeMnNi alloys in NaCl solutions were 100-200
mV lower than the as-built and annealed material in this study.

Possibly because of the refinement of nonmetallic inclusions common for AM material.



Anodic polarization behavior of CoCrFeMnN1 alloy o

compared to 304L stainless steel
CoCrFeMnNi alloy _304L
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Luo et al.
(2018)

This study performed in 0.1 M H,SO, shows significantly more corrosion of
the HEA. Had concluded passive film was less stable than 304L because:

* Less Cr was present in film.
* More hydroxide species.
* Lack of bounded water.



| Anodic polarization behavior of CoCrFeMnN1 alloy

compared to 304L stainless steel
Pitting resistance equivalent number (PREn) = %Cr+3.3%Mo+30%N

PRE, = %Cr+3.3%Mo+30%N-1.0%Mn (Rondelli et al. 1995)

Composition (wt%)| Cr Mn Mo N |PRE,
304L 18.4 1.76 0.31 0.073 | 18.8
As-built 18.2 18.5 0.002 | 0.002 [-0.2334

The PRE,, may not make complete sense here, but What about the other alloying elements?
there have been plenty of studies showing Mn has an 0.2 R—
adverse effect on local corrosion resistance of steels: e aenanan SN Ilillz A
* Abhilaetal. (1996) ‘0-4'_ “““““ Lo
 Ancetal. (2016) 0.6- Co
« Kemp et al. (1995) 3 ke
« Rondelli et al. (1995) 5 -0.81
+ Toor et al. (2008) ” | Immersion in 0.6 M NaCl
 Zhuetal. (1998) ]
e Zhang et al. (1999) -1.21 "
. Tjong et al. (1986) {~~0—0—o—o—o—o—o—eTeTeTITA M
* Moon et al. (2019) T T e 0 a0

Time (seconds)



7| Passive behavior of CoCrFeMnNi alloy

Calculated Pourbaix diagram for CoCrFeNi alloy

(a) In 3.5 wt% NaCl aqueous
solution at 25 °C and 1 bar.
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B. Zhang, Y. Zhang, S.M. Guo, A thermodynamic study of corrosion behaviors for CoCrFeNi-
based high-entropy alloys, Journal of Materials Science, 53 (2018) 14729-14738.




18| Pi_t orology of CoCrFeMnNi1 alloy — as-built
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Interdendrite regions are preferentially
corroding leading to a unique pit
morphology with a porous pit cover
(not traditionally lacy pit cover) along
with a tortuous pit bottom, again ‘ ‘
associated with preferred interdendrite e S | : Som
corrosion.




M P1t morphology of CoCrFeMan alloy — as-built
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20| Pit morphology of CoCrFeMnN1 alloy — annealed

0

Signs of lacy
pit cover.

Typically observed lower number of pits on the annealed specimen after a CPP measurement.

Pit bottom was smooth compared to as-built HEA. Pit stability implications?



21 | Conclusions

Successfully built a low porosity, single FCC phase HEA
with the LENS technique.

Chemical heterogeneity persists but is less severe than as-cast
material. Post process heat treatments homogenized
microstructure.

Elongation to failure (%)

Mechanical properties were similar to previous work with
minimal sample to sample scatter compared to other additive
work.

Corrosion behavior showed a significant passive region in 0.6
M NaCl solutions, however it was not as large as 304L
stainless.
* Likely culprit is abundance of Mn.

* Galvanic couple effects.

* Less stable passive corrosion product.
* Pit morphology and passivation studies should better define this.
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Powder and DED characteristics

Average powder dlameter = 67 um

Build direction

ﬂENS®

\

Open archltecture Laser Engmeered Net Shaping (LENS) system using a 2kW
fiber laser (1064 nm):
* Inert atmosphere maintained at <50ppm O, and <10ppm H,O by a

Focused laser

beam ——
Powder feed ————p 2

Layer
Thickness

continuously flowing Ar gas.

e Laser power: 350 —400 W.
* Build velocity: 400 — 600 mm/min.

* A 90 degree cross hatch build pattern was employed, first material deposited

each layer was the perimeter of the build.

.

Scan direction (x)

Courtesy of Andrew Kusu

Composition (wt%) Al C Co Cr Fe Mn Ni N O S
Powder 0.003+ | 0.005+ | 2091+ |18.46+ [20.14| 19.06+ | 21.34+ | 0.002 £ [0.064 | 0.008 +
0.00045 | 0.00075 0.42 0.37 |+£0.40{ 0.38 0.43 [0.00026]0.0096| 0.0012
As-built 0.006+ | 0.005+ | 21.3+ | 18.2+ 0.5 185+ | 21.5+ |0.0021 +{0.055£|0.005 +
0.00012 | 0.00075 0.43 0.36 0.37 0.43 10.00032]0.0083{0.00075

Powder from Ames Lab: Drs. Emma White and Iver Anderson

Chemical analysis by NSL Analytical.
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Pit morphology of CoCrFeMnNi1 alloy — as-built

Early stages of pitting show propagation
below surface can occur via this
preferred interdendrite corrosion.




271 P1t morphology of CoCrFeMnN1 alloy — compared to 304L

_As-built HEA | As-built 304L

\ ‘\ ". - - . g Ve -

Annealed/wrought conditions show flat pit bottoms and lacy pit morphology.
Inter/intra dendrite regions will have some control of pit morphology/propagation for as-built material.




x| What causes this preferred interdendrite corrosion?

Short answer: chemical heterogeneity, \‘ ? e
specifically enriched areas of Mn. . -

LY L3
Long Answer: several factors ‘ .
involving how Mn impacts passivation -~
locally:

* Mn has the lowest Nernst potential
of all major alloying elements,
leading to galvanic coupling effect.

* Less stable passive corrosion
product in areas enriched in Mn
(possibly depleted in Cr).

What dominates?



