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Abstract— In enterprise decision systems it is necessary to
gather detailed computing node data on all hosts via
Configuration Modules (CMs). In a fully interoperable
enterprise, each deployed CM collects node configuration
and event data which is formatted compliant to a standard
format such as the Common Platform Enumeration Model
(CPE) standard. In practice, however, enterprise segment
administrators generally do not adhere to configuration
and event entity data naming standards such as CPE. Non-
adherence to a common naming standard results in
network nodes containing entity names with similar
semantic meanings but with differing names. To properly
manage the enterprise, a centralized enterprise decision
system must somehow correlate disparate names with
similar meaning. With the probability that node
administrators will intuitively commonly name fragments
of entity names based on the name meaning, this paper
investigates various matching algorithms, and explores the
use of hybrid algorithms to efficiently match entity names.
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L INTRODUCTION

In named entity matching where often an exact string match is
not possible, approximate matching methods must be utilized.
String similarity measures used to match named entities (NE)
include sequential character based methods such as Levenstein
[5] edit distance. The Levenstien distance metric represents
the minimum number of insertions, deletions or substitutions
needed to transform one string into another string. Many
variants of Levenstien exist that improve the usefulness of the
metric including measuring the cost of reordering or
transposing characters in a string. The bag-of-words (BOW)
methods is another approach named entity is represented as a
set of features usually in the form of words or character
ngrams. The least complex methods count the number of
elements in common while other methods in this class
represent each NE as a vector and consider parameters that are
not included in the NE character sets themselves. Such
methods take into the account the frequency of the NE
occurrences within a document or dataset to identify
relationships between NEs. Using a BOW approach is helpful
when there may exist a relationship between the compared
NEs with relation to the document or dataset which they reside
within. For example, if two NEs occur in combination with
similar frequency, that may indicate they possess equivalent
semantic meaning. One such method that is popularly used is
called the cosine similarity [1] method where each NE of
interest in a dataset is represented as a separate feature in a
vector. The value of each feature is the number of times the
feature occurs in the dataset. The cosine similarity is a
measure of the cosine angle between the inner product space
between the feature vectors. Cosine similarity is generally
used in positive space where unit vectors (similar vectors) are
parallel and dissimilar vectors are orthogonal.

NE matching using similarity measures are effective at
matching long multi-character NEs that differ only by a few
characters while BOW methods are better suited for NE
matching problems where there exists meaningful
relationships between the NEs within a dataset. In the case of
enterprise decision systems, often times the dataset does not
contain meaningful relationships between NEs. In such cases
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the only method for matching coreferent NEs is to use
similarity measures.

In this paper, various NE similarity measurement
algorithms are utilized to quantify the variation between NEs
within an enterprise management system. Matching accuracy
and computing complexity of the various algorithms are
illustrated, and an efficient hybrid solution is discussed.
Finally, various naming scheme are explored in various use
cases as means for solving enterprise entity naming issues.

II. BACKGROUND

A. Character and Token Based Methods

As stated previously, NEs in an enterprise decision system do
not necessarily relate to one another explicitly within the
enterprise management dataset. In such cases it is necessary to
use string similarity measures to compare the NE character
patterns for similarities in hope that system administrators
have included similar ngrams in their naming schemes.
Character-based methods compare strings in thier entirety.
The most common character-based techniques are Levenstein
distance [5], Damerau distance [18], Needleman—Wunsch[19],
Smith—Waterman[20], Monge—Elkan[21], and Jaro[22]. The
distance methods Levenstein and Damerau find the minimum
number of operations consisting of insertions, deletions or
substitutions of single characters or transpositions of two
adjacent characters required to change one string to the other.
The other methods inspect character sequence alignments
using optimized schemes to derive similarity measures, and
are generally utilized for comparing long character sequences
in such applications as protein and DNA sequence analysis.

B. Kernel Methods

Kernel-based supervised machine learning classification
algorithms such as support vector machines can be used to
compare strings.  Discriminative similarity kernel-based
learning attempts to capture the distinction between different
strings by considering both positive and negative samples
(samples not closely matching) when performing training, and
often can provide the most accurate results[23]. One
promising kernel method proposed by Leslie in [24] uses a
class of kernels that derive features from strings which are
superior discriminating between character sequences as
compared to generative training scenarios where only positive
samples (samples closely matching) are considered.

In many cases NE matching datasets will contain a few
positive training samples (character sequences we wish to
match) along with many negative training samples. Often
when insufficient positive training samples are present,
classifier performance will be less accurate (poorly defined
decision boundary) which requires the expansion of the
training dataset. When adding additional data, it must be
manually labeling which results in inefficient training

scenarios. Classes of kernels that can process unlabeled data
such as the profile kernel [25] and the mismatch neighborhood
kernel [26] can much more efficiently classify unlabeled
character sequences than the traditional supervised methods.
The use of such methods can come at a greater computational
cost and should be considered. In the sections that follow, we
will discuss the use of a class of mismatch neighborhood
kernel called sequence neighborhood kernel (SNK) in
matching NE strings and illustrate its performance
characteristics.

C. Hashing Methods

Several hashing algorithms exist that are often used in exact
nearest neighbor and R-near neighbor search problems. When
such methods are applied to high-dimension cases, the
required computational resources become quite high. In an
effort to optimize search efficiency there has been much effort
dedicated to developing approximate nearest neighbor search
algorithms. Where the exact nearest neighbor search is a
proximity search optimization that finds the closest set of
points to a given point which is guided by a dissimilarity
function. An approximate nearest neighbor search is guided by
a metric that considers points some specified distance from the
given point with the thought that in most cases an approximate
nearest neighbor is as good as a true nearest neighbor.

The most efficient hashing algorithms map the target item
to be matched such that an approximate nearest neighbor
search can be efficiently and accurately performed using a
small subset of the dataset. In the hashing context, the target
items are called hash codes. In this paper, we may also call it
short/compact code interchangeably. The two methods for
using hash codes to perform nearest neighbor search are a
hash table lookup and Fast distance approximation. A hash
table data structure consists of buckets which are each indexed
by hash codes. Each reference item in a dataset is assigned a
bucket. The hashing algorithm creates a hash table that
maximizes the probability of collision of near items. The Fast
distance approximation hashing method compares the
searched for item with each reference item by fast computing
the distance between the query and the hash code of the
reference item. The reference items that have the smallest
distances are the possible nearest neighbors. This is then
followed by comparing possible nearest neighbor true
distances computed using the original features and then
attaining the K nearest neighbors or R-near neighbor.

One class of approximate nearest neighbor hashing
algorithms is explored and discussed in the following sections
and its performance and NE string matching accuracy is
discussed in detail.



III. ENTERPRISE NAMED ENTITY SIMILARITY METHODS

A. Enterprise Management Domain

The experimental enterprise management system used (shown
in Figure 1) in our analysis primarily gathered detailed asset
inventory data on network hosts via the McAfee Asset
Configuration and Compliance Module (ACCM) and the
McAfee Agent (MA). In the experimental enterprise
management system all ACCM and MA managed network
nodes were managed by different administrators who did not
explicitly name and format collected asset data per the
Common Platform Enumeration Model (CPE) standard 2.3
which specifies format and naming conventions per node
attribute. Therefore the collection components did not
consistently name assets (NEs) using CPE names as a guide,
nor has stored asset data fully aligned with the CPE formatting
standards. The algorithms described below explores the use of
potential NE matching algorithms that given disparate ACCM
or MA names can accurately and efficiently find a closely
matching CPE name.

Using a representative sample of ACCM and MA collected
asset data, the goals of this study were to:

e To describe the variance between the CPE naming
and formatting standards and the ACCM and MA
sample dataset.

e To measure the accuracy of selected algorithms in
matching ACCM and MA names to CPE 2.3 names.

e To suggest the use of a hybrid matching algorithm in
performing name matching.

e To explore the use of the SWID naming scheme in
various use cases as means for solving naming
issues.

The diagram shows the data analysis framework used in the
analysis.

Figure 1: Data Fusion Framework

As will be illustrated in the sections that follow, various
candidate string matching and hashing algorithms are utilized
to quantify the variation. Matching accuracy and computing
complexity of the various algorithms are illustrated, and an
efficient hybrid solution is discussed. Finally, the SWID
naming scheme is explored in various use cases as means for
solving naming issues.

As stated previously, the ACCM and Mcafee MA datasets do
not fully comply with the naming and formatting conventions
of the CPE standard. For this reason a cleansing and name
extraction component was developed in order to extract and
format ACCM and McAfee MA datasets to closely match the
CPE 2.3 naming format. The ACCM by default adds ASCII
control characters as delimiters in addition to the accepted
CPE colon delimiters. During name extraction, these non-CPE
delimiters are removed from the ACCM dataset such that
string matching can be performed using the matching
algorithms: Vagner-Fisher and a String Kernel variant. As the
MA data fields are delimited with colons without the addition
of ASCII control characters, cleansing of the MA dataset was
not necessary. As shown in the Figure 1, the Locality
Sensitive Hashing (LSH) algorithm is implemented as well in
order to measure possible efficiency gains that such hashing
can provide in matching performance. Theory and
implementation details of these algorithms are explained in the
sections that follow.

B. Data Characterization

This section explores the possibilities of translation between
and generation of names with different structures. The first
subsection sets the stage by describing the format for CPE 2.3
names, the format for SWID tags, and the implied format for
ACCM and for McAfee names.

G CPE 2.3 Names

NIST IR 7695 states that “The WFN concept [explained
below] and the bindings defined by the CPE Naming
specification [also explained below] are the fundamental
building blocks of all CPE functionality” [7] (page 1).

The “well-formed CPE name” (WFN) is a notation consisting
of an “unordered set of attribute-value pairs that collectively
(a) describe or identify a software application, operating
system, or hardware device, and (b) satisfy the criteria
specified in Section 5.2 [7] (page 8).

The syntax of a WFN is as follows [7] (page 9):
win:[al=vl, a2=v2, ..., an=vn]
where

al, a2, and an are attributes and
vl, v2, and vn are values



The “criteria” that appear in the following sections of [9] lists
the 11 permissible attributes.

The document provides an example of a WFN:

win:[part = “a”, vendor = “microsoft”, product =
“internet_explorer”, version = “8\.0\.6001”, update =
G‘beta”]

Note that the values are surrounded by quotes, that spaces
within values are replaced with an underscore (“_), and that
the periods embedded in a value are escaped via the backslash.

The WFN is a notation “used solely for the purposes of
explaining and illustrating the concepts and procedures
specified herein [i.e., in the CPE document]” [9] (page 9).
However, a WFN can be bound to machine-readable
representations “for interchange and processing” (page 8).

CPE 2.3 provides for two “bindings.” The first binding is the
Uniform Resource Identifier (URI) binding that provides
backward compatibility for CPE 2.2. The example WFN
above is shown below in the URI binding:

cpe:/a:Microsoft:internet_explorer:8.0.6001:beta

Note that the URI binding is a set of ordered values delimited
by the colon.

The second binding is the “formatted string binding.” The
example WFN above is shown below in this binding.

cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*

The NIST document provides pseudocode for
e converting (or “binding”) a WFN to a URI
e converting (or “unbinding”) a URI to a WFN
e converting (or “binding”) a WFN to a formatted
string
e converting (or “unbinding”) a formatted string to a
WEFN.

The pseudocode is written so that the WEN serves as an
intermediary between the two bindings: converting a URI to a
WEFN and then to a formatted string, and then converting that
formatted string to a WFN and then to a URI (or the entire
process in reverse) ends up with the same URI that we began
with (i.e., the pseudocode is “round trip safe”[9] (page 41)).

D. SWID Tags

A software identification (SWID) tag is an XML file as
defined by ISO/IEC 19770-2:20093 “Software Identification
(SWID) Tag.” The file “resides along with the software on the
device” [10] (page 8). A SWID tag consists of seven
mandatory fields. The standard allows for “extended data”

(i.e., additional fields). This document proposes an additional
field named cpe_id. This additional field is a string structured
as a CPE 2.3 formatted string binding. So the SWID tag
described in this document is a proper superset of a CPE 2.3
formatted string, from which a CPE 2.3 formatted string could
be automatically extracted.

The expectation is that a vendor creating a certified SWID tag
for a software product will also automatically generate a
corresponding CPE with this CPE name included in the SWID
tag as the cpe id...The benefits of this approach cannot be
overstated because the CPE name and the SWID tag are
managed through all aspects of the products [sic] lifecycle and
will enable discovery, compliance, security, patching and
many other logistical processes to use exactly the same
reference details for a software product [10] (page 13).

E. ACCM Names

Both CPE 2.3 and SWID tags have documents that describe
the format. Presumably there is a document that describes the
format of ACCM names as well but it is not available for this
research. As a result we have to infer the structure from the
161,377 example names provided.

A casual scan suggests that all of the names begin with cpe:/:
and that the fields appear to be delimited with colons (they do
not appear to be attribute value pairs, for example). CPE 2.2
names begin with cpe:/a for applications, cpe:/o for operating
systems, and cpe:/h for hardware. And CPE names—both 2.2
and 2.3—are ordered with fields delimited by colons, not
attribute value pairs. So the ACCM names appear to be
formatted similar to CPE 2.2 names.

F. Mcafee MA Names

Like the names in the ACCM file reviewed in the previous
section, the 870 names in the McAfee file appear to have a
structure similar to CPE 2.2.

Each line of the file begins with a or o. If the line begins with
a, it ends with %; if the line begins with o, it sometimes ends
with:, suggesting that the last field in the name is blank. Lines
that begin with o include windows or linux or hp-ux, for
example, and lines that begin with a include
symantec_antivirus and policy_editor_agent and
host_intrusion_protection, for example, so we presume that
the convention follows CPE with o for operating system and a
for application. In general it appears that the lines use the
following structure:
a:<company name>:<application name>:<date>

o::<operating system name>:<operating system
version>:<patch level>
o:<company name>:<operating system

name>:<operating system version>:<patch level>



Sometimes <patch level> is missing or is n%2fa which is n/a,

As with ACCM names presented above, the McAfee name
structure is like CPE 2.2 but not actually CPE 2.2.

G. Matching Algorithms and Methodology

After conducting a review of a number of string matching
algorithms including sources [3-13], three primary
measurement and performance enhancing algorithms are
included in the analysis and were selected due to their unique
approaches, efficiencies and lower complexity. A brief
description of each algorithm is described below.

Vagner-Fisher: The Vagner—Fischer algorithm computes edit
distance of each string matching another string and holds them
in a matrix. The pseudo code in table 1 below finds the edit
distance between two strings, s of length m, and ¢ of length n.

Algorithm 1: Vagner-Fisher(char s[1..m], char

t[1..n])

1 let d be a 2-d array of int with dimensions
[0..m, 0..n]

2 foriin [0..m]

3 d[i, 0] < i

4 forjin [0..n]

5 d[o, j] <]

6 forjin[l.n]

7 foriin[1..m]

8 if s[i] = t[j] then

9 d[i, j] « d[i-1, j-1]

10 else

11 d[i, j] « minimum of

12 (

13 dli-1,j]+ 1,

14 dli, j-1]1+ 1,

15 dfi-1,j-1]+1

16 )

17 return d[m,n]

The distance array d[i, j] holds distances between the first i
characters of s and the first j characters of ¢. The array d is a
2-dimensional array holding [0..m, 0..n] values. Lines 2-3
assign Levenshtein distance values of any first string to an
empty second string. Lines 4-5 assign distance values of any
second string to an empty first string. In lines 7-16, character

comparisons are made for strings s and ¢ If the characters of
the two strings are not the same, then the edit distance is
determined in lines 11-16. The algorithm can be adapted to
use less space from O(mn) to O(m), but it is not easily
parallelized due to data dependencies. A threshold & can be set
as a minimum distance and a diagonal of width 2k + lin
distance matrix d can be computed. The algorithm can then be
run in O(k/) time with / the length of the shortest string.

Sequence Neighborhood Kernel (SNK):

Scoring similarity between pairs of sequences between strings
can be based on fixed, spectral representations of sequential
data and the use of mismatch kernels [11, 13]. In this scoring
context, the counts of all short substrings, termed k-mers,
contained within a sequence are found. A k-mer refers to all
the possible substrings, of length %, that are contained in a
string. Like Vagner-Fisher, similarity scores are established by
measuring the number of transformations required on a k-mer
based on different models of deletions, insertions and
mutations. Efficiency for large alphabet sizes and loosely
defined matching models are often computationally intensive.
As an example, the complexity of well-known trie-based
matching algorithms using a mismatch kernel between two
strings depends on the alphabet size and the number of
mismatches allowed, and are only efficient when employed
with shorter strings with smaller alphabets [9, 10]. Predictive
models are more capable in terms of being useful with large
alphabets and string sizes, but are computationally complex
[13].

The Sequence Neighborhood Kernel (SNK) algorithm uses
inexact mismatch string comparisons, which greatly improve
runtimes for string comparison operations. The algorithm
relies on an efficient use of mismatch neighborhoods and k-
mer statistics on sets of sequences that result in a mismatch

kernel algorithm of complexity O (ck,m(lX | + |Y|)), where

crm 18 a constant independent of the alphabet, X and Y are
comparison strings, k is continuous substring length, and m is
the number of mismatches.

Although not performed in our analysis, it is possible to create
alphabets consisting of substrings in order to increase match
efficiency. The consequence of this strategy is a potentially
very large alphabet with thousands of symbols. In such cases,
SNK is highly efficient acting as a semi-supervised learning
method [16].

Locality Sensitive Hashing (LSH):

Locality Sensitive Hashing can be used to reduce the
dimension of high-dimensional data by hashing input data
such that similar data is segregated into the same buckets. The
goal of LSH is to create hashes for similar data, thereby
maximizing the probability of collision. Once data is hashed,
it is possible to conduct highly efficient nearest neighbor



searches [14, 15]. The hashing and search processing works
as follows:

1. Pre-processing Step 1 (Random Hash Function
Selected): A family of G hash functions is obtained
by concatenating k functions /,.../; . A random hash
function g is obtained by concatenating k& randomly
chosen hash functions from the LSH family F.

2. Pre-processing Step 2 (Constructing Hash Tables):
A set of hash tables L, each corresponding to a
different randomly chosen hash function g, is
constructed. On a data set S, each of the data points
n are hashed into each of the L hash tables.

3. Search Process: Given a query point ¢, the
algorithm iterates over the set of hash functions g.
For each g considered, it retrieves the data points
that are hashed into the same bucket as ¢g. The
process stops when a point within a specified
distance cR from ¢ is found, where R is a distance
threshold and c¢ is an approximation ratio.

The following is the performance for the preprocessing steps
and the search process:

Pre-processing: O(nLkt) where ¢ is the time to
evaluate a hash function /.

Searching: O(L(kt + dnPk)) where d is the distance
threshold for a match  with
probability PY.

V. MATCHING RESULTS

A. Accuracy of Matching Algorithms

After extraction and cleansing of the ACCM and MA datasets,
each of the ACCM and MA names are compared to each of
the over 90K CPE 2.3 names. Edit distances, and k-mer
(defined below) commonality are measured using the Vagner-
Fisher (VF) and Sequence Neighborhood Kernel (SNK)
algorithms respectively. LSH hashing is also evaluated for its
ability to bucket CPE names into various hash tables for
efficient nearest neighbor comparison with ACCM and MA
names.

Figures 2 below shows the matching accuracy for the VF and
SNK algorithms. It should be noted that on a standard 4 core
processor, the execution times for comparing 100 randomly
selected ACCM and MA samples with the 90K CPE names
using VF and SNK is 5.8 and 1.4 hours respectively. With
limited computing resources available, comparisons between
VF and SNK were only made for 100 samples.
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Figure 2: Matching Accuracy of SNK & VF with ACCM
Data.

Later analysis for the more efficient SNK algorithm was
performed with 500 randomly selected samples in order to
show accuracy with a higher number of samples. In Figure
2(a) and (b) 20 ACCM and 100 ACCM samples were
compared with 90916 CPE 2.3 names. On the horizontal axis
the match threshold percentage is indicated with values
between 0-100. For VF, the match threshold represents the
edit distance as a percentage of the string length while for
SNK it represents the k-mer statistic as a percentage of the
string length. The vertical axis is a measure of these
percentages as compared to the match thresholds. As shown,
as the match threshold is increased, the number of positive
string matches meeting the distinct match thresholds decrease.

An algorithm that yields a large number of string matches
across the entire range of thresholds is an accurate matching
algorithm. In Figures 2(a) and (b) the match accuracy
decreases rapidly as the match threshold values increase. In
2(a), VF and SNK exhibit approximately the same accuracy
while in 2(b) SNK shows a slightly higher accuracy than VF.
As the number of ACCM (4) and MA (M) samples compared
to the fixed number of CPE names (C) increases, the
probability of a match increases (4/C, M/C). In 2(b) there are
5 times as many ACCM points sampled as compared to 2(a)
which indicates that SNK exhibits a greater computational
affinity to the ACCM data than VF, and accuracy is expected
to increase as the number of samples compared increases.

Figure 3 below shows the accuracy of VF and SNK for MA
data samples. SNK is clearly more accurate than VF.
Additionally, on average, both VF and SNK exhibit greater
accuracy than with the ACCM data. This indicates that the
MA names are closer in structure to CPE names than ACCM
names are.
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Figure 3: Matching Accuracy of SNK & VF with ACCM
Data.

Additionally, the figures above show that SNK is more
accurate with ACCM and MA names than VF is.

Figures 4 and 5 below show the accuracy for SNK alone in
matching 100 ACCM names & 500 MA names with all 90916
CPE 2.3 names. Again, accuracy increases as sample size
increases.
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Figure 5: Matching Accuracy of SNK with McAfee MA Data

The scope of this investigation did not include measuring the
accuracy of the LSH nearest neighbor search algorithm.
Rather the research was confined to analyzing LSH hashing as
a means to sort the data into hash tables, and with the goal of
reducing the overall number of string compares.

Figure 6 below shows how well LSH is able to order CPE
names into 20 hash tables with a hashing key length of 64 bits.
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Figure 4: Matching Accuracy of SNK with ACCM Data.
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Figure 6: CPE Name Hashing using LSH

In figure 6(a) the horizontal axis lists the number of each hash
table generated while the vertical axis lists the number of
buckets in each of the tables. In Figure 6(b) the horizontal axis
lists the number of each of hash table while the vertical axis
lists the expected occupancy of the number of names that
potentially could be placed in each bucket of the table.




When generating the tables, the hash key length in bits and the
number of tables is specified. The resulting structure is a set of
hash tables with each table containing the 90K+ hashed CPE
names distributed within the table buckets in quantities based
on name similarities. Looking at Figures 6 (a) and (b), it is
apparent which tables have the well distributed names. Those
tables having the greatest number of buckets and the lowest
expected occupancy rate exhibit the greatest distribution of
names. When performing nearest neighbor searches, selecting
tables with large numbers of buckets and low expected per
bucket occupancy rates yields the shortest nearest neighbor
search execution times.

As Figure 6 shows, tables 15 and 19 meet these criteria and
should be selected when performing a nearest neighbor search
for matching an ACCM or MA name to a CPE name. When
conducting such a search, a max number of nearest neighbors
to be returned is specified. Subsequently, the indices of the
closest hash values are returned. From this cursory analysis, it
appears that the CPE 2.3 names dataset lends itself well to
LSH hashing as tables with both large numbers of buckets and
low per bucket expected occupancy rates are present.

B. Computational Complexity

Table 1 below shows the average execution times and
computational complexity for Vagner-Fisher (VF), Sequence
Neighborhood Kernel (SNK), and Locality Sensitive Hashing
(LSH) algorithms, given the complexity variables:

d = length of string

k = continuous substring length
m = number of mismatches

n = number of strings

X = a comparison string

Y = a comparison string

w = width parameter

t = time to evaluate function

p = probability of collision

s = vector dimension

Cim = constant independent of alphabet

Computational complexity indicates the resources needed by a
particular algorithm to solve a problem and is generally
expressed in Big-O notation. Big-O notation is a mathematical
representation of an algorithm’s data manipulations.
Providing a detailed analysis of the topic of computational
complexity is beyond the scope of this study, and reference
[15] provides full coverage of the topic.
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Table 1: Algorithm Complexity and Execution Times

Vagner-Fisher has the highest complexity: it exhibited
execution times nearly 5 times longer than SNK. The
efficiency analysis indicates that VF and SNK algorithms are
linear in the number of samples. Although analysis of nearest
neighbor search performance was not conducted for LSH, the
average execution time for generating a 20 table LSH
structure using the approximately 90K CPE names was 11
minutes.

C. Suggested Fusing Algorithm

Algorithm 2 below illustrates a suggested data fusing
algorithm that will provide greater accuracy and decrease the
execution time for finding the most probable CPE name match
for ACCM and MA names.

Algorithm 2: FusingAlgorithm(C, A, M )

1 begin
/* The LSH key size array K and LSH hash table
size array S
are initialized. */
2 initialize i, ¢, j=0; K = {ki, ..., ks}; S = {si, ...,

sr}; where ki, si

3 do /* Run LSH algorithm, hash structs L = {I;,
R

4 li — Ish(C, ki, si);

5 i=i+1;

6 end do

/* Finding table 7, with greatest # bins lowest
expected occup*/

7 T « optimalTable(L;);
/* Find nearest neighbors NNA and NNM within

distance cR */

8 for each 4;do
9 NNA; — IshNN(T, 4));
10 if(NNAj<= cR)

11 Ns «— SNK(NNAj, Aj); /* quantify match



12 end if

13 j=j+1;

14 end for

15 for each M do

16 NNMy «— IshNN(T, My)

17 if(NNMy <= cR)

18 Ms «— SNK(NNM,, My); /* quantify match
19 end if

20 qg=q+1;

21 end for

Algorithm 2 arguments CPE names (C), ACCM names (4),
and MA names (M) are input in order to first find the optimal
search table 7 within the LSH structure L (lines 1-7). The
optimal search table will be a table that has the highest
number of bins per table with the lowest possible per bucket
expected occupancy. Once the optimal search table is
identified, the nearest neighbors within distance cR are then
found for all ACCM and MA names (lines 8-20). In order to
ensure the closest match and to quantify the match similarity,
the SNK algorithm is used to measure the similarity or match
statistics Ms and Ns between the CPE nearest neighbors for
each ACCM (4,) and MA (M,) name (lines 11, 18).

L CONCLUSIONS

A. Matching Analysis Summary

As shown in section 3, the variation between ACCM, MA and
CPE names is substantial. The number of matches decreases
precipitously as the match threshold is increased for both
algorithms tested. ACCM formatting requires that cleansing
be performed prior to matching and subsequent matching
shows low accuracy. MA data does not require cleansing and
its names do more closely conform to CPE names than do
ACCM names; however, the probability of a match for MA
names using the most efficient and accurate algorithm (SNK),
is only 0.8 at a 50% match threshold.

Another issue lies in the shear number of string-wise
comparisons that will be needed to classify ACCM and MA
names on a global scale. In the testing performed thus far, the
execution time using the most efficient algorithm (SNK) with
500 MA samples was 7 hours. Applying this algorithm to the
projected 10 million existing names would require 20K, 4 core
processors each processing for 7 hours.

A practical approach would be to use lower cost GPU
equipped computing clusters containing tens of thousands of
processor cores. Each of these processors using Algorithm 2
and subsets of the MA and ACCM dataset could
simultaneously and efficiently conduct search and compare
operations.

Even with the above stated efficiencies in place and
considering the variance of ACCM and MA names from the
CPE dictionary, it is unlikely that a definitive, high-confidence
matching method can be derived without changes to the
naming formats themselves. The following sections discuss
possible name generation schemes that address these naming
differences.

B. Possible Naming Solutions

Given the descriptions of the four name types presented
above, this subsection explores the possibilities of translation
between and generation of those names, either after the names
have been generated (“downstream”) or as the names are
generated (“upstream”).

Downstream:

The ACCM and McAfee names are sufficiently regular that
matching to CPE 2.3 names is possible.
However, the fields do not match the CPE 2.3 fields. So it
appears that the most efficient way to do the matching may be
to parse the names. An ACCM name such as
cpe:/:seagate:seagate_manager_installer:2.01.0013
can be recognized as the seagate_manager_installer
application by the company Seagate. And perhaps the version
is dated 2.01.0013. A similar approach could be used for the
McAfee names. However, in both cases not all of the lines
follow this syntax. This complicates the parsing, possibly
requiring some lines to be discarded. In some ways this is
partly like converting the names to attribute value pairs—a
subset of WFN. It does not appear that SWID tags could help
here. Granted, SWID tags permit an embedded CPE 2.3 name
but in order for a CPE 2.3 name to be embedded, it must first
be created. For the purposes here, there is no value in
embedding a CPE 2.3 name in a SWID tag.

If the publishers of the software and hardware create names
according to a specification imposed upon them, instead of
according to their own specification, then, as the SWID tag
document noted above proposes, the ideal would be to create a
SWID tag with an embedded CPE 2.3 name.
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