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2 | Moore’s Law - Continued Scaling

Transistor density continues to increase
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3 | 2.5D/3D Heterogeneously Integrated Microsystems

2.5D “System in Package”

— Micro-bumps = 2.5D Integration on Interposer

/ = Use Sandia tech, COTS, MPW die, partner die, etc.
- . / in low volumes
e e vl
/ = Partially disentangle issues of performance,
i uiuu;uuluul lewiwim I«—’. radiation hardness, etc.
. = Standardized digital/analog/power buses
<« — Flip-chip bumps . . . .
~\\ SIP Substrate = Limited BEOL processing for interconnect (no
( ) i\ z‘dws:)e m;-,ps TSVs thru function die, limit process
eetimes.com ircult boar

incompatibilities)
. ' " Pre-build active device blocks
Flexible Interconnect Fabric = Heterogeneous Integration
— Multi layer high density routing : : : _
—» Massively parallel 1/0 for future functions = High-value functions in custom technologies
(performance, rad-hard/trust functions) = Unlock performance of disparate technologies

— Low latency, low packaging parasitics = Internal and external tech: 111/Vs, MEMS,
photonics, etc.

Challenge: Microbumping for low-volume USG applications (DOE, DOD, etc.)

Current options: High Labor Cost - or - High Fab Cost




4 I Multi-Project Wafers (MPW)

MPW Wafers

Costs of a run are distributed
across many different customers
(10s-100s kS)

Access to high performance

technology nodes

Must follow standard process flow
and design rules

Die ready for flip chip bonding
isn’t always an option

Customer A

Customer G MPW Die

Polyimide \
Customer G Nitride AlCu Bond Pad

Customer A
Oxide




Challenges with MPW Die: Foundry CMOS + Advanced 2.5D

Current Option 1

(1) Dedicated Run (2) Wafer-level
lithography
and UBM
@ foundry
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(3)' Wafer-level (4) Dice 5) Flio-chi

ataon

@ foundry

Current Option 2

“student labor” F —
/:Ba) Die-level (4a) Die-level
i litho and bump
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EEEiEE!EEﬂEE
: el e e e
(1) MPW run (2) Dice W
Everyone
else

litho and UBM

________

(3b) Accurately

reconstitute
afer on carrier

-
————————————

(4b-c) “Wafer’-level litho and
UBM, then litho and bumping (5) Flip-chip

attach




6 I Challenges with Low Volume, High Value 2.5D Integration

Very Low Volume = 1 - 100 die Low Volume = 100 - 1000s of die Mid-high volume = > 1000s die

Utilize interns, students,
postdocs... (but they hate you)
Use interns/students/postdocs
Make a wafer-like substitute at Buy a dedicated run at an
Feasible for demonstrations OSAT SSS advanced foundry
and development

Spend lots of $SS and purchase
full wafers from a foundry
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Proposed Solution: Lithography Free Batch Level Processing

New Option 3

(1

=)\ (4) Batch process litho-free

=" electroless UBM plating \
(=

_/ (6) Flip-chip

ice (3) Coarse attach

placement
on carrier (5) Form pbumps on
interposer wafers

Benefits:

- Massive cost savings through MPW runs

- Batch process with no fine alignment

- Lithography “free”

- Wafer-level interposer bumping @ legacy fab
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Die Level UBM Preparation

1. As received MPW die with AICu bond pads

Polyimide
Nitride

a AICu Bond Pad
N -

2. Flip die upside down onto carrier wafer and
deposit 1 yum CVD TEOS to passivate exposed Si

AICu Bond Pad

- -

* Exposed Si disrupts ENEPIG/ENIG electroless
deposition and must be passivated

* 10% thickness coverage on sidewall

* No temporary bonding media necessary

3. A temporary epoxy mounting compound (EMC) used for
batch level UBM deposition

Temporary Die Bonding

Epoxy Mounting Compound (EMC)

4. Batch electroless UBM deposition.
ENEPIG = electroless Ni, electroless Pd, immersion Au.

AICu Pads Zn + Ni Sl sl

|[E=mm e ere o) e |

Epoxy Mounting Compound (EMC)

5. Solvent release die from EMC and die are ready for flip
chip bonding

Palladium
Nickel

Zincated AICu




Interposer Preparation

9 I Micro-bumped Interposers

Si Interposer

Au Thermocompression Bonding INICEY - Al Pad

Foundry AICu

Cu Pillar Reflow Attachment

Foundry AICu

Zincated AICu

Nickel
Gold

Si Interposer

Zincated AICu

[ Plated SnAg Nickel
Palladium
Gold Plated Au

Cu Pillar Cu UBM

Pt/Au UBM

Passivation

“Al Pad - Al Pad

Si Interposer

Interposer Interposer

. \F}Vef:llow sold:r a;tachmednt «  Thercompression bonding (TCB) | |
* Wide-spread industry adoption « Less reactive, more ductile than Cu -
* Intermetallic formation concerns . T(CB usually has thick Au on both sides Al Pad Al Pad
* Height determined by Cu pillar »  Au to ENEPIG bonding needs to be Si Interposer
* Pd not necessary evaluated
* Rigidity has potential mechanical . T(CB force may damage low-k dielectrics

reliability concerns «  Potentially compatible with TSV thinning
*  SnAg defines temperature and TSV pad formation processes

constraints (challenging integration
with TSV thinning)

Si Interposer




" Recipe Conditions

Coat Recipe:
© # 762-J]MC PLATING TEST

o AZ 40xT Coat
o 1200 RPM

o Soft Bake
o 125°C/120 sec d@ 1.27 mm
o 125°C/120 sec @ 0.63 mm
o 125°C/180 sec @ 0.00 mm

EBR Recipe
> #763 JMC 40XT EBR
° 7mm edge bead

Exposure
> Hard contact (0.3 Bar WEC), 36s exposure energy

PEB and Develop
° #7064 JMC PEB 40XT
° PEB
° 110°C/10sec @ 1.3mm
° 110°C/10 sec @ 0.6 mm
° 110°C/ 80 sec @ 0.0 mm

> Developer
> MIF 30s puddle x 6



A1: 20 pm hole

24.5 £ 0.5 um

54800 5.0kV x1.80k SE(U

B2: 35 ym hole

389+O3 um

S4800 5.0kV x1.80k SE(U

S4800 3.0kV x450 SE(M)

4661 0.7 um

4 |
-~




12 I Copper Pillar Bump Development — Prewet conditions

54800 3.0kV x900 SE(L)

No Prewet Tergitol

S4800 3.0kV x900 SE(L)



13 I Copper Pillar Bump Development - Vacuum Prewet

Air bubbles can become trapped
in high aspect ratio features

Applying a vacuum before wetting
reduces the volume of the bubbles
Allowing them to escape when returned to atmosphere

54800 3.0kV x1.50k SE(U)

S4800 3.0kV x450 SE(M) 100um




14 | Problem Statement

S4800 3.0kV X220 SE(M) 200um

54800 3.0kV x350 SE(M)

There’s a height difference of the pillars
towards the edge of the array.

Trackable Data
Keyence SEM
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16 I Experiment — Results Methodology
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« Two Diagonal profiles are used (top left -> bottom right and top right -> bottom
left)

« 20 measurements per profile give the heights of the bumps (center floor to
center top) and the widths (determined near the bottom)

 Note: Widths are not 100% accurate due to method of measurement. Can
compare widths within the same run but not well run to run.
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Experiment

DC plating experiments —

Just rotation rate {

Full Factor DOE on
rotation and reverse —
plating

Note that 15 mA for 10 ms is more than the forward
charge... Not running numbers 7 and 11

Reverse Reverse

Run Spin Pulse Current E:;
(ms)  (mA)
il 40 0 0 0
2 200 0 0 o
3 200 0 0 1
4 40 1 7 1
5 40 1 15 1
6 40 10 7 1
* 48 20 15 2
8 200 1 = 1
9 200 1 15 1
10 200 10 7 1

LXE

raviv)

11U

19




s | Copper Bump Development —Tune Additives and Current Density

el L] ] |

$S4800 3.0kV x350 SE(M) 100um $4800 3.0kV x350 SE(M) 100um S4800 3.0kV x350 SE(M) 100um S4800 3.0kV x350 SE(M) 100um

24.80 um

54800 3.0kV x220 SE(M) S $4800 3.0KV x3.00k SE(M) 10.0um




19 | Cu Pillar Development

ENIG Coated MPW die

SnAg Capped Cu Pillar SnAg Reflow * Electroplated (ECD) Cu pillars
; / A * Cap pillars with ECD SnAg solder

* Reflow solder attachment
e 55 um pitch demonstrated, smaller
pitch possible

Foundry Allu
Zinzated ALy

Passiiation

Cu Pillar CulIBM
b

interposer

Bonded Pair with 55 um Pitch Bond Pads

$4800 10.0kV x1.80k SE(U)



Gold Bump Development

54800 3.0kV x4.50k SE(M)

Au BUMPS

S4800 3.0kV x400 SE(M) 100um "
S4800 3.0kV x4.00k SE(M)
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Gold Bump Development — Seed and UBM Removal

Pre seed removal

No IBE

Post seed removal

Yes IBE

S4800 3.0kV x2.50k SE(L) 20.0um S4800 3.0kV x3.00k SE(M)

10.0um




Au Microbump Development

Au to ENIG -> Poor Bond Au to ENEPIG -> Good Bond

(N)3S 305 2X A0°0L 0087S

ENEPIG Coated MPW die

Foundry AlCu
Zincated AlCu

Nickel

__— Pt/Au UBM
Plated Au

S4800 10.0kV x9.00k SE(U)

$4800 10.0kV x2.50k SE(U)

Interposer

N ; .‘::,\_‘

$4800 10.0kV x15.0k SE(U)




Thank you — Questions!?




24 I Zincation Process
Process

« Zinc complexes exchange in solution
with Aluminum resulting in Zn
deposition and Al etching
Grow zinc crystallites for 30-60
seconds
Quickly dissolve zinc in HNO; and
repeat

Rough Al Surface with thin oxide

Zincation Formula

100:1:10:500 ZnO/FeCl;/Rochelle
salt/NaOH

Zn0 is Zn source

FeCl; and tartrate ions enhance

Etch Zinc smoother oxide results

adhesion of Zn deposits
Sodium nitrate limits the thickness of

Repeat Zincation - smoother film Zn deposits
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25 | Zincation Results ENIG Coated Pads

After Zincation
A d pad
| bond pads and Electroless Ni




