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4 Background

Causality in an engineered system pertains to how a system output changes due to a
controlled change in the system or system environment.

o Engineered systems designs reflect a causal theory regarding how a system will work

o Predicting reliability often requires knowledge of this underlying causal structure.

Formal causal inference methods have played a large role in many fields over the
past decades, e.g. epidemiology and the social sciences.

o Recent interest in causality in AI fueled by Judea Pearl.

When do we need formal causal inference tools in engineering applications?

o Can tools like structural causal modeling inform with reliability estimation?



5 Background

When you want to know if X causes Y, what is the ideal study design?

, Randomization!

, Examples: clinical trials, design of experiments

o What happens when you don't have perfect data?

Causal inference methods pertain to counterfactuals.

o Used with observational data — what you see is what you get

o Hypothetical intervention in a population - P[Y 1 clo(X=x)]
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6 Causal inference in engineering applications

Limited work on causal inference methods in engineering
applications.
o Aven 2014; Broniatowski and Tucker (2017); Li & Shi 2007;
Marazopoulou et al. 2016.

National defense problems are all about counterfactuals,
i.e. "extrapolative prediction."

o System components: Predicting performance across various
designs and environments with limited data.

o Computer models: Predict to setting without data.

Engineers are good at counterfactual prediction.
Are there areas where formal causal inference might help?
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7 Example:Addressing selection bias

Voltage of a thermal battery over time
o Batteries must meet a minimum voltage requirement (26.8V) throughout 25-year lifespan
for different inputs and environments with 98% reliability.

Data were collected on battery voltage over time (n=200 total tests).
o Naïve analysis using linear model of voltage over time results in 85% reliability estimate.

o YIA = 25 — NU30+/31 * 25, o-2)

However, data contain biases:
o Load is higher, on average, than what would be expected in normal use conditions.
o Load is not recorded in the data.
• Actual quantity of interest: P(Y do(A=a))

Data contain selection bias on a variable not measured in the data.
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8 Structural causal modeling

We apply the structural causal modeling (SCM) framework (Pearl 2009; Pearl &
Bareinboim 2016) to illustrate how causal modeling can be used in a reliability
application with "imperfect" data.

O Common types of "imperfections:" selection bias and confounding bias.

O Goal: Ensure data analysis methods reflect the data generating mechanism.

Structural causal model specifies how model

inputs (L) relate to model output (Y).
• SCM M = IF, U, Y1
• Full model is not known, but existence of

causal relationships between observed and
unobserved inputs and outputs is specified.

Graphical representation of a data
generating mechanism and underlying
causal structure.



9 Structural causal modeling

In practice, we want to move from qualitative

DAG model to quantitative statistical model

in order to estimate a causal query.

Example: Backdoor adjustment formula for confounding adjustment:

P(Yldo(X = x)) =EzP(IX = Z = z)13(Z = z)

Unobserved counterfactual Observed in data

Stratifying on Z, we can estimate the counterfactual of interest from the data.



io Types of statistical modeling assumptions

When applying the adjustment formula, there is a need to distinguish between
`structural' and 'functional' modeling assumptions.

- Structural: Have we collected a sufficient set of variables Z to estimate the causal
query?

- Functional: Assuming we have collected the right data, is the model for the data
sufficient (i.e., are P (Y IX = x, Z = z) and P(Z = z) correctly specified)?

P(Yldo(X = x)) = P(YIX = x,Z = z)P(Z = z)
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ii Steps of causal analysis

1. Define a causal query.

2. Determine how the collected data relates to the

true underlying structural causal model.

° Make a causal diagram.

3. Check if sufficient data to estimate query

(structural assumptions).

° Path between selection indicator and voltage

through unmeasured load suggests not estimable.

4. Estimate the query from the data, collect more

data, or do a sensitivity study (functional

assumptions).



12 Sensitivity study

Formula to estimate causal query under selection bias (Bareinboim & Pearl 2016):

P(Yldo(A = a)) = li P(17114 = L 1 . 1) P(L = 1) di

true dist.

We can conduct sensitivity study by making assumptions about:

- The true load distribution: P(L=1)

- The relationship between voltage, load, and age: P(Y1A=a, L=1, S=1)

- The load distribution in the selection sample: P(L=11S = 1)



13 Sensitivity study

Formula to estimate causal query under selection bias (Bareinboim & Pearl 2016):

P(Y Ido(A = a)) =

Specify statistical model:

YilAi, Li, S = 1

Ei

LiRS = 1)

02

1P(Y1A = a, = 1, S = 1) 13(L = 1) dl
%%•!.r.ser...1

true dist.

00 + 01. Ai + 02Li Ei

N(0,u)

TN Oil, .25,0,1) assumed selection distribution

N(.9, .2) assumed selection distribution

iNd N (-4, 2) assumed load-voltage association

Update using Bayesian inference with flat priors on )6'0, and a.



14 Sensitivity study results

Predicted voltage at 25 years comparing naïve analysis and sensitivity study.
o The pointwise median is in a darker color than the 95% pointwise confidence intervals.

. The true distribution lies within the 95% confidence intervals from the sensitivity study.

o Reliability estimate changes from .85 to 95% CI (.975, .993) under sensitivity study.
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15 Conclusion

We present a simple example of how causal thinking can inform a reliability analysis.
O Advantages: informs how naïve analysis can be impacted by biases in data and what
information to collect next, emphasizes the data generating mechanism.

O Limitations: very simple example, strong functional assumptions about relationships in the
data, requires knowledge about the data generating mechanism that may not be available.

Conclusions: SCM gives a language for credibility of a prediction and may be useful
in situations with ample observational data.

Future directions:

o Sensitivity studies can help determine what information to collect next — "value of
information."

o Where else can causal methods improve data science in national defense and engineering?

0 Calibration and validation of computer models, where consideration of data generating mechanism
and biases in data is critical.

0 Data fusion, when determining how to integrate multiple datasets with different information.
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17 SCM in engineering applications

Limited work on causal inference methods in engineering
applications:

• Need for causal inference methods in risk assessment (Aven
2014).

o Broniatowski and Tucker (2017) described high-level notions of
validity that can be used to assess data-driven causal claims
about engineering systems.

• Previous work has also considered how to learn causal networks
in engineered systems from manufacturing data (Li & Shi 2007;
Marazopoulou et al. 2016).

• We are concerned with reliability assurance applications where
expert judgment is the primary source of information for
building the causal network because data are biased and often
sparse, which is a common situation in practice.
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18 Value of information

Sensitivity study can inform what information to collect next.

- Value of information: consider cost relative to information gain.

Val = E(CID) — E(CID,D*)

where C is cost, D is current information, and D* is new information to be
collected.

- Consider "value of information" associated with:
• Conducting more tests under current design.

o Gathering more information about the load selection distribution.

o Gathering more information about the load-voltage association.

Requires specifying cost structure on consequences of failing requirement.

• To avoid, can simply use statistical precision metrics.


