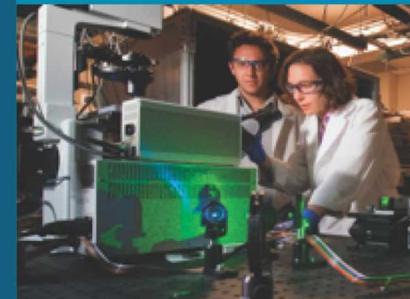


A causal perspective on reliability assessment



PRESENTED BY

Lauren Hund and Ben Schroeder

Funding acknowledgment

This work was supported by a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) grant. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Background

Structural causal modeling in engineering applications

Example problem: addressing selection bias

Conclusions

Causality in an engineered system pertains to how a system output changes due to a controlled change in the system or system environment.

- Engineered systems designs reflect a causal theory regarding how a system will work
- Predicting reliability often requires knowledge of this underlying causal structure.

Formal causal inference methods have played a large role in many fields over the past decades, e.g. epidemiology and the social sciences.

- Recent interest in causality in AI fueled by Judea Pearl.

When do we need formal causal inference tools in engineering applications?

- Can tools like structural causal modeling inform with reliability estimation?

When you want to know if X causes Y, what is the ideal study design?

- Randomization!
- Examples: clinical trials, design of experiments
- What happens when you don't have perfect data?

Causal inference methods pertain to **counterfactuals**.

- Used with observational data – what you see is what you get
- Hypothetical intervention in a population - $P[Y | do(X=x)]$

Ideal

		Levels of factor 1				
		X				
Levels of factor 2						
		X				
				X		
		X				
			X			

Actual

		Levels of factor 1				
		X	X			
Levels of factor 2						
				X		
		X	X			

Causal inference in engineering applications

Limited work on causal inference methods in engineering applications.

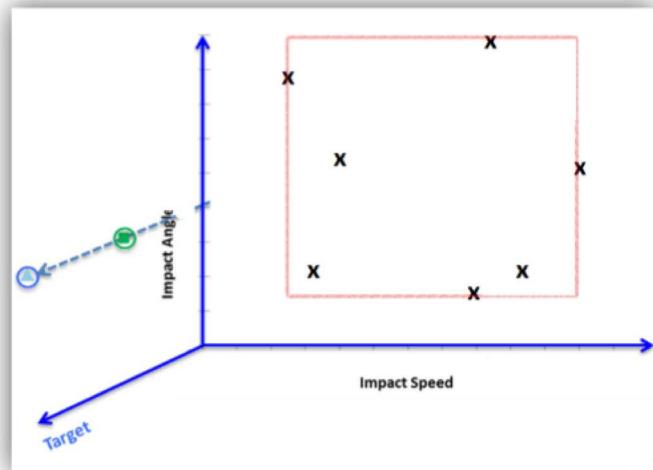
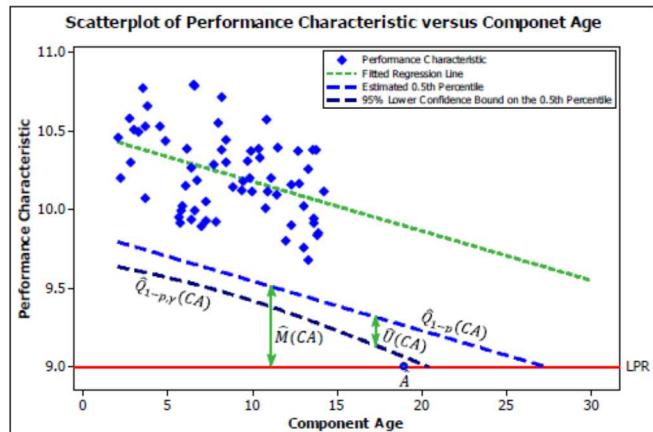
- Aven 2014; Broniatowski and Tucker (2017); Li & Shi 2007; Marazopoulou et al. 2016.

National defense problems are all about counterfactuals, i.e. “extrapolative prediction.”

- System components: Predicting performance across various designs and environments with limited data.
- Computer models: Predict to setting without data.

Engineers are good at counterfactual prediction.

- Are there areas where formal causal inference might help?



Example: Addressing selection bias

Voltage of a thermal battery over time

- Batteries must meet a minimum voltage requirement (26.8V) throughout 25-year lifespan for different inputs and environments with 98% reliability.

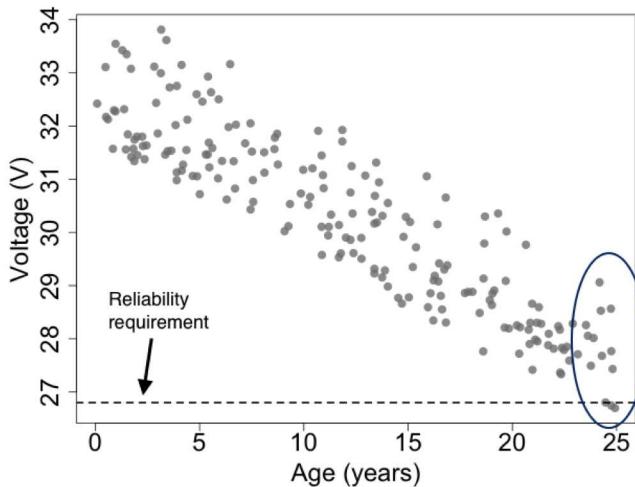
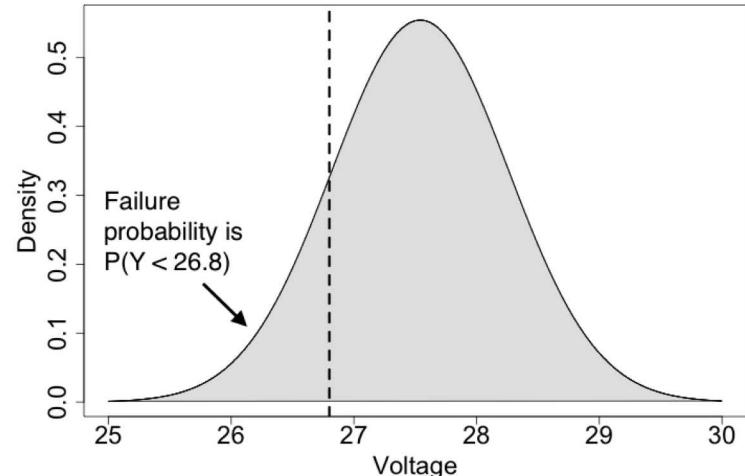
Data were collected on battery voltage over time (n=200 total tests).

- Naïve analysis using linear model of voltage over time results in 85% reliability estimate.
- $Y|A = 25 \sim N(\beta_0 + \beta_1 * 25, \sigma^2)$

However, data contain biases:

- Load is higher, on average, than what would be expected in normal use conditions.
- Load is not recorded in the data.
- Actual quantity of interest: $P(Y | \text{do}(A=a))$

Data contain selection bias on a variable not measured in the data.

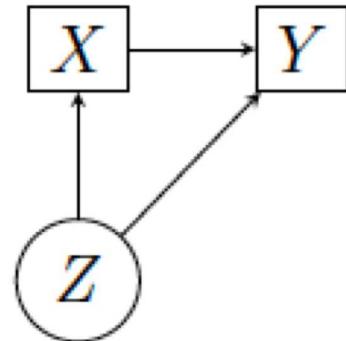


We apply the structural causal modeling (SCM) framework (Pearl 2009; Pearl & Bareinboim 2016) to illustrate how causal modeling can be used in a reliability application with “imperfect” data.

- Common types of “imperfections:” selection bias and confounding bias.
- Goal: Ensure data analysis methods reflect the **data generating mechanism**.

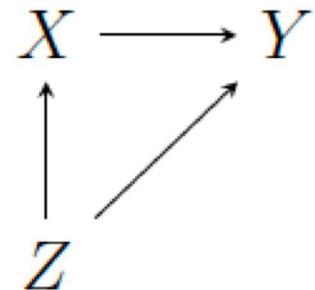
Structural causal model specifies how model inputs (U) relate to model output (Y).

- SCM $M = \{F, U, Y\}$
- Full model is not known, but *existence* of causal relationships between observed and unobserved inputs and outputs is specified.



Graphical representation of a data generating mechanism and underlying causal structure.

In practice, we want to move from *qualitative* DAG model to *quantitative* statistical model in order to estimate a causal query.



Example: Backdoor adjustment formula for confounding adjustment:

$$P(Y|do(X = x)) = \sum_z P(Y|X = x, Z = z)P(Z = z)$$

Unobserved counterfactual

Observed in data

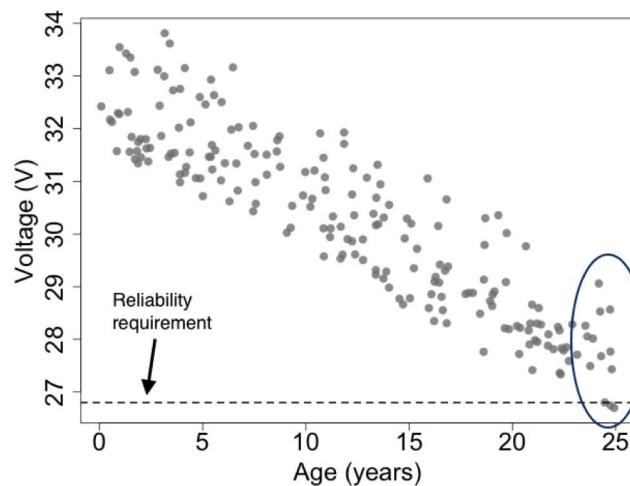
Stratifying on Z , we can estimate the counterfactual of interest from the data.

Types of statistical modeling assumptions

When applying the adjustment formula, there is a need to distinguish between 'structural' and 'functional' modeling assumptions.

- **Structural:** Have we collected a sufficient set of variables Z to estimate the causal query?
- **Functional:** Assuming we have collected the right data, is the model for the data sufficient (i.e., are $P(Y|X = x, Z = z)$ and $P(Z = z)$ correctly specified)?

$$P(Y|do(X = x)) = \sum_z P(Y|X = x, Z = z)P(Z = z)$$

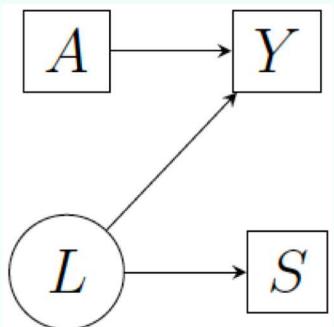


1. Define a causal query.
2. Determine how the collected data relates to the true underlying structural causal model.
 - Make a causal diagram.
3. Check if sufficient data to estimate query (structural assumptions).
 - Path between selection indicator and voltage through unmeasured load suggests not estimable.
4. Estimate the query from the data, collect more data, or do a sensitivity study (functional assumptions).

Step 1: Causal query

$$P(Y = do(A = a))$$

Step 2: DAG



Formula to estimate causal query under selection bias (Bareinboim & Pearl 2016):

$$P(Y|do(A = a)) = \int_l P(Y|A = a, L = l, S = 1) \underbrace{P(L = l)}_{true\ dist.} dl$$

We can conduct sensitivity study by making assumptions about:

- The true load distribution: $P(L=l)$
- The relationship between voltage, load, and age: $P(Y|A=a, L=l, S=1)$
- The load distribution in the selection sample: $P(L=l|S = 1)$

Formula to estimate causal query under selection bias (Bareinboim & Pearl 2016):

$$P(Y|do(A = a)) = \int_l P(Y|A = a, L = l, S = 1) \underbrace{P(L = l)}_{true\ dist.} dl$$

Specify statistical model:

$$Y_i|A_i, L_i, S = 1 = \beta_0 + \beta_1 A_i + \beta_2 L_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma)$$

$$L_i|(S = 1) \sim TN(\mu_l, .25, 0, 1) \text{ assumed selection distribution}$$

$$\mu_l \sim N(.9, .2) \text{ assumed selection distribution}$$

$$\beta_2 \sim N(-4, 2) \text{ assumed load-voltage association}$$

Update using Bayesian inference with flat priors on β_0 , β_1 , and σ .

Predicted voltage at 25 years comparing naïve analysis and sensitivity study.

- The pointwise median is in a darker color than the 95% pointwise confidence intervals.
- The true distribution lies within the 95% confidence intervals from the sensitivity study.
- Reliability estimate changes from .85 to 95% CI (.975, .993) under sensitivity study.



We present a simple example of how causal thinking can inform a reliability analysis.

- Advantages: informs how naïve analysis can be impacted by biases in data and what information to collect next, emphasizes the data generating mechanism.
- Limitations: very simple example, strong functional assumptions about relationships in the data, requires knowledge about the data generating mechanism that may not be available.

Conclusions: SCM gives a language for credibility of a prediction and may be useful in situations with ample *observational data*.

Future directions:

- Sensitivity studies can help determine what information to collect next – “value of information.”
- Where else can causal methods improve data science in national defense and engineering?
 - Calibration and validation of computer models, where consideration of data generating mechanism and biases in data is critical.
 - Data fusion, when determining how to integrate multiple datasets with different information.

Aven, T. Foundational issues in risk assessment and risk management." Risk Analysis , 34(7) (2014).

Bareinboim, E. and Pearl, J. Causal inference and the data-fusion problem." Proceedings of the National Academy of Sciences, 113(27):7345-7352 (2016).

Broniatowski, D. A. and Tucker, C. Assessing causal claims about complex engineered systems with quantitative data: internal, external, and construct validity." Systems Engineering , 20(6):483-496 (2017).

Hernan, M. A. and Robins, J. M. Causal Inference . Chapman & Hall, CRC: forthcoming (2018). <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>.

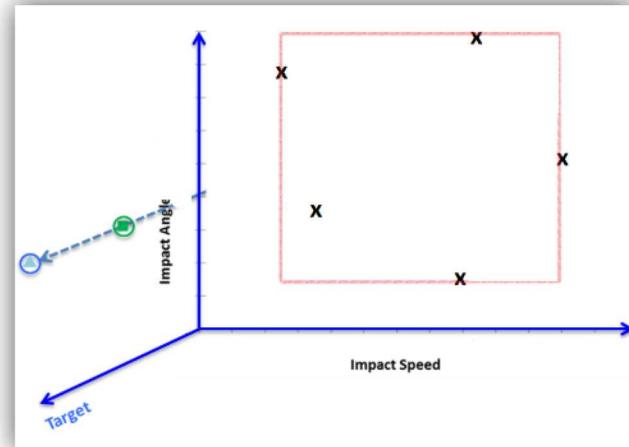
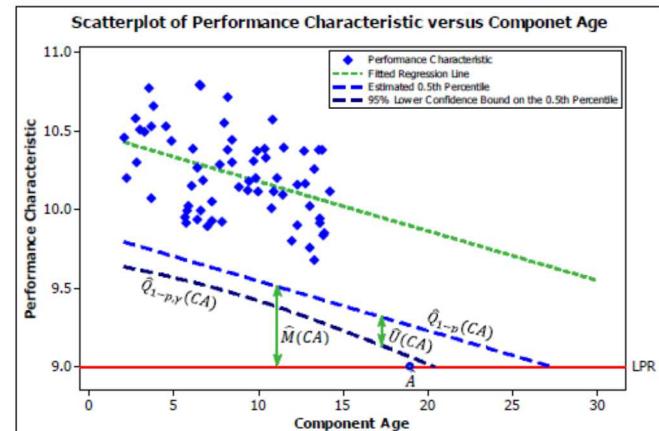
Li, J. and Shi, J. \Knowledge discovery from observational data for process control using causal Bayesian networks." IIE Transactions, 39(6):681-690 (2007).

Marazopoulou, K., Ghosh, R., Lade, P., and Jensen, D. Causal discovery for manufacturing domains." arXiv preprint arXiv:1605.04056 (2016).

Pearl, J. Causality. New York: Cambridge University Press (2009).

Limited work on causal inference methods in engineering applications:

- Need for causal inference methods in risk assessment (Aven 2014).
- Broniatowski and Tucker (2017) described high-level notions of validity that can be used to assess data-driven causal claims about engineering systems.
- Previous work has also considered how to learn causal networks in engineered systems from manufacturing data (Li & Shi 2007; Marazopoulou et al. 2016).
- We are concerned with reliability assurance applications where expert judgment is the primary source of information for building the causal network because data are biased and often sparse, which is a common situation in practice.



Sensitivity study can inform what information to collect next.

- Value of information: consider cost relative to information gain.

$$VoI = E(C|\mathcal{D}) - E(C|\mathcal{D}, \mathcal{D}^*)$$

where C is cost, D is current information, and D* is new information to be collected.

- Consider “value of information” associated with:
 - Conducting more tests under current design.
 - Gathering more information about the load selection distribution.
 - Gathering more information about the load-voltage association.

Requires specifying cost structure on consequences of failing requirement.

- To avoid, can simply use statistical precision metrics.